The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Pengoptimuman prapemprosesan pelicinan untuk anggaran parameter isyarat berkorelasi telah dipertimbangkan. Walaupun faktor pelicinan (bilangan subarray) adalah parameter percuma dalam prapemprosesan pelicinan, strategi yang berguna untuk menentukannya masih belum diwujudkan. Dalam kertas kerja ini, kami menyiasat secara menyeluruh tentang faktor pelicinan dan juga mencadangkan skim baharu untuk mengoptimumkannya. Kaedah yang dicadangkan, menggunakan profil kepelbagaian setara terlicin (profil SED), mampu menilai kesan pelicinan prapemprosesan tanpa sebarang maklumat priori. Oleh itu, kaedah ini boleh digunakan dalam anggaran parameter berbilang laluan sebenar.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Kei SAKAGUCHI, Jun-ichi TAKADA, Kiyomichi ARAKI, "An Optimization of Smoothing Preprocessing for Correlated Signal Parameter Estimation" in IEICE TRANSACTIONS on Communications,
vol. E83-B, no. 9, pp. 2117-2123, September 2000, doi: .
Abstract: An optimization of the smoothing preprocessing for the correlated signal parameter estimation was considered. Although the smoothing factor (the number of subarrays) is a free parameter in the smoothing preprocessing, a useful strategy to determine it has not yet been established. In this paper, we investigated thoroughly about the smoothing factor and also proposed a new scheme to optimize it. The proposed method, using the smoothed equivalent diversity profile (SED profile), is able to evaluate the effect of smoothing preprocessing without any a priori information. Therefore, this method is applicable in the real multipath parameter estimation.
URL: https://global.ieice.org/en_transactions/communications/10.1587/e83-b_9_2117/_p
Salinan
@ARTICLE{e83-b_9_2117,
author={Kei SAKAGUCHI, Jun-ichi TAKADA, Kiyomichi ARAKI, },
journal={IEICE TRANSACTIONS on Communications},
title={An Optimization of Smoothing Preprocessing for Correlated Signal Parameter Estimation},
year={2000},
volume={E83-B},
number={9},
pages={2117-2123},
abstract={An optimization of the smoothing preprocessing for the correlated signal parameter estimation was considered. Although the smoothing factor (the number of subarrays) is a free parameter in the smoothing preprocessing, a useful strategy to determine it has not yet been established. In this paper, we investigated thoroughly about the smoothing factor and also proposed a new scheme to optimize it. The proposed method, using the smoothed equivalent diversity profile (SED profile), is able to evaluate the effect of smoothing preprocessing without any a priori information. Therefore, this method is applicable in the real multipath parameter estimation.},
keywords={},
doi={},
ISSN={},
month={September},}
Salinan
TY - JOUR
TI - An Optimization of Smoothing Preprocessing for Correlated Signal Parameter Estimation
T2 - IEICE TRANSACTIONS on Communications
SP - 2117
EP - 2123
AU - Kei SAKAGUCHI
AU - Jun-ichi TAKADA
AU - Kiyomichi ARAKI
PY - 2000
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E83-B
IS - 9
JA - IEICE TRANSACTIONS on Communications
Y1 - September 2000
AB - An optimization of the smoothing preprocessing for the correlated signal parameter estimation was considered. Although the smoothing factor (the number of subarrays) is a free parameter in the smoothing preprocessing, a useful strategy to determine it has not yet been established. In this paper, we investigated thoroughly about the smoothing factor and also proposed a new scheme to optimize it. The proposed method, using the smoothed equivalent diversity profile (SED profile), is able to evaluate the effect of smoothing preprocessing without any a priori information. Therefore, this method is applicable in the real multipath parameter estimation.
ER -