The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Pengenalpastian saluran penyesuaian buta bagi saluran komunikasi adalah masalah kebimbangan teori dan praktikal semasa yang penting. Penyelesaian yang dicadangkan baru-baru ini untuk masalah ini mengeksploitasi kepelbagaian yang disebabkan oleh tatasusunan antena atau pensampelan berlebihan masa, yang membawa kepada apa yang dipanggil, teknik statistik tertib kedua. Teknik pengenalan saluran buta adaptif berdasarkan pendekatan kuasa dua terkecil luar talian telah dicadangkan tetapi kaedah ini menganggap kes bebas hingar. Kaedah ini menggunakan penapis penyesuaian dengan kekangan linear. Kertas kerja ini mencadangkan pendekatan baharu berdasarkan penguraian nilai eigen. Sesungguhnya, vektor eigen sepadan dengan nilai eigen minimum matriks kovarians isyarat yang diterima mengandungi tindak balas impuls saluran. Dan kami membentangkan algoritma penyesuaian untuk menyelesaikan masalah ini. Prestasi teknik yang dicadangkan dinilai melalui saluran yang diukur sebenar dan dibandingkan dengan algoritma sedia ada.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Kyung Seung AHN, Eul Chool BYUN, Heung Ki BAIK, "Blind Channel Identification Based on Eigenvalue Decomposition Using Constrained LMS Algorithm" in IEICE TRANSACTIONS on Communications,
vol. E85-B, no. 5, pp. 961-966, May 2002, doi: .
Abstract: Blind adaptive channel identification of communication channels is a problem of important current theoretical and practical concerns. Recently proposed solutions for this problem exploit the diversity induced by antenna array or time oversampling, leading to the so-called, second order statistics techniques. Adaptive blind channel identification techniques based on a off-line least-squares approach have been proposed but this method assumes noise-free case. The method resorts to an adaptive filter with a linear constraint. This paper proposes a new approach based on eigenvalue decomposition. Indeed, the eigenvector corresponding to the minimum eigenvalue of the covariance matrix of the received signals contains the channel impulse response. And we present a adaptive algorithm to solve this problem. The performance of the proposed technique is evaluated over real measured channel and is compared to existing algorithms.
URL: https://global.ieice.org/en_transactions/communications/10.1587/e85-b_5_961/_p
Salinan
@ARTICLE{e85-b_5_961,
author={Kyung Seung AHN, Eul Chool BYUN, Heung Ki BAIK, },
journal={IEICE TRANSACTIONS on Communications},
title={Blind Channel Identification Based on Eigenvalue Decomposition Using Constrained LMS Algorithm},
year={2002},
volume={E85-B},
number={5},
pages={961-966},
abstract={Blind adaptive channel identification of communication channels is a problem of important current theoretical and practical concerns. Recently proposed solutions for this problem exploit the diversity induced by antenna array or time oversampling, leading to the so-called, second order statistics techniques. Adaptive blind channel identification techniques based on a off-line least-squares approach have been proposed but this method assumes noise-free case. The method resorts to an adaptive filter with a linear constraint. This paper proposes a new approach based on eigenvalue decomposition. Indeed, the eigenvector corresponding to the minimum eigenvalue of the covariance matrix of the received signals contains the channel impulse response. And we present a adaptive algorithm to solve this problem. The performance of the proposed technique is evaluated over real measured channel and is compared to existing algorithms.},
keywords={},
doi={},
ISSN={},
month={May},}
Salinan
TY - JOUR
TI - Blind Channel Identification Based on Eigenvalue Decomposition Using Constrained LMS Algorithm
T2 - IEICE TRANSACTIONS on Communications
SP - 961
EP - 966
AU - Kyung Seung AHN
AU - Eul Chool BYUN
AU - Heung Ki BAIK
PY - 2002
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E85-B
IS - 5
JA - IEICE TRANSACTIONS on Communications
Y1 - May 2002
AB - Blind adaptive channel identification of communication channels is a problem of important current theoretical and practical concerns. Recently proposed solutions for this problem exploit the diversity induced by antenna array or time oversampling, leading to the so-called, second order statistics techniques. Adaptive blind channel identification techniques based on a off-line least-squares approach have been proposed but this method assumes noise-free case. The method resorts to an adaptive filter with a linear constraint. This paper proposes a new approach based on eigenvalue decomposition. Indeed, the eigenvector corresponding to the minimum eigenvalue of the covariance matrix of the received signals contains the channel impulse response. And we present a adaptive algorithm to solve this problem. The performance of the proposed technique is evaluated over real measured channel and is compared to existing algorithms.
ER -