The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Perkongsian dinamik sumber spektrum radio terhad dijangka dapat memenuhi permintaan yang semakin meningkat untuk sumber spektrum dalam era sistem komunikasi mudah alih (5G) generasi ke-5 yang akan datang dan seterusnya. Penderiaan spektrum masa nyata yang diedarkan ialah pemboleh utama perkongsian spektrum dinamik, tetapi kos yang ditanggung dalam penghantaran data yang diperhatikan adalah masalah kritikal, terutamanya apabila sejumlah besar penderia spektrum digunakan. Untuk menangani isu ini, penderia spektrum yang dicadangkan mempelajari persekitaran radio ambien dalam masa nyata dan mencipta model spektrum masa yang parameternya dikongsi dengan pelayan yang beroperasi dalam lapisan pengkomputeran tepi. Proses ini memungkinkan untuk mengurangkan kos komunikasi penderia dengan ketara kerana penghantaran data yang kerap tidak lagi diperlukan sambil membolehkan pelayan tepi mengikuti status semasa persekitaran radio. Berdasarkan model spektrum masa yang dicipta, sumber spektrum boleh kongsi dituai secara dinamik dan diperuntukkan dari segi domain geospatial, temporal dan spektrum frekuensi apabila menerima permohonan untuk penggunaan spektrum sekunder. Sistem pengurusan spektrum prototaip berasaskan web telah dilaksanakan menggunakan sepuluh pelayan dan berpuluh-puluh penderia. Keputusan yang diukur menunjukkan bahawa pendekatan yang dicadangkan boleh mengurangkan trafik data antara penderia dan pelayan sebanyak 97%, mencapai kadar purata data 10 kilobit sesaat (kbps). Di samping itu, aliran operasi asas prototaip telah disahkan melalui eksperimen lapangan yang dijalankan di kemudahan pembuatan dan eksperimen pembuktian konsep perkongsian spektrum dinamik menggunakan peralatan rangkaian kawasan tempatan tanpa wayar.
Masaki KITSUNEZUKA
NEC Corporation
Kenta TSUKAMOTO
NEC Corporation
Jun SAKAI
NEC Corporation
Taichi OHTSUJI
NEC Corporation
Kazuaki KUNIHIRO
NEC Corporation
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Masaki KITSUNEZUKA, Kenta TSUKAMOTO, Jun SAKAI, Taichi OHTSUJI, Kazuaki KUNIHIRO, "Learning-Based, Distributed Spectrum Observation System for Dynamic Spectrum Sharing in the 5G Era and Beyond" in IEICE TRANSACTIONS on Communications,
vol. E102-B, no. 8, pp. 1526-1537, August 2019, doi: 10.1587/transcom.2018TTP0003.
Abstract: Dynamic sharing of limited radio spectrum resources is expected to satisfy the increasing demand for spectrum resources in the upcoming 5th generation mobile communication system (5G) era and beyond. Distributed real-time spectrum sensing is a key enabler of dynamic spectrum sharing, but the costs incurred in observed-data transmission are a critical problem, especially when massive numbers of spectrum sensors are deployed. To cope with this issue, the proposed spectrum sensors learn the ambient radio environment in real-time and create a time-spectral model whose parameters are shared with servers operating in the edge-computing layer. This process makes it possible to significantly reduce the communication cost of the sensors because frequent data transmission is no longer needed while enabling the edge servers to keep up on the current status of the radio environment. On the basis of the created time-spectral model, sharable spectrum resources are dynamically harvested and allocated in terms of geospatial, temporal, and frequency-spectral domains when accepting an application for secondary-spectrum use. A web-based prototype spectrum management system has been implemented using ten servers and dozens of sensors. Measured results show that the proposed approach can reduce data traffic between the sensors and servers by 97%, achieving an average data rate of 10 kilobits per second (kbps). In addition, the basic operation flow of the prototype has been verified through a field experiment conducted at a manufacturing facility and a proof-of-concept experiment of dynamic-spectrum sharing using wireless local-area-network equipment.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.2018TTP0003/_p
Salinan
@ARTICLE{e102-b_8_1526,
author={Masaki KITSUNEZUKA, Kenta TSUKAMOTO, Jun SAKAI, Taichi OHTSUJI, Kazuaki KUNIHIRO, },
journal={IEICE TRANSACTIONS on Communications},
title={Learning-Based, Distributed Spectrum Observation System for Dynamic Spectrum Sharing in the 5G Era and Beyond},
year={2019},
volume={E102-B},
number={8},
pages={1526-1537},
abstract={Dynamic sharing of limited radio spectrum resources is expected to satisfy the increasing demand for spectrum resources in the upcoming 5th generation mobile communication system (5G) era and beyond. Distributed real-time spectrum sensing is a key enabler of dynamic spectrum sharing, but the costs incurred in observed-data transmission are a critical problem, especially when massive numbers of spectrum sensors are deployed. To cope with this issue, the proposed spectrum sensors learn the ambient radio environment in real-time and create a time-spectral model whose parameters are shared with servers operating in the edge-computing layer. This process makes it possible to significantly reduce the communication cost of the sensors because frequent data transmission is no longer needed while enabling the edge servers to keep up on the current status of the radio environment. On the basis of the created time-spectral model, sharable spectrum resources are dynamically harvested and allocated in terms of geospatial, temporal, and frequency-spectral domains when accepting an application for secondary-spectrum use. A web-based prototype spectrum management system has been implemented using ten servers and dozens of sensors. Measured results show that the proposed approach can reduce data traffic between the sensors and servers by 97%, achieving an average data rate of 10 kilobits per second (kbps). In addition, the basic operation flow of the prototype has been verified through a field experiment conducted at a manufacturing facility and a proof-of-concept experiment of dynamic-spectrum sharing using wireless local-area-network equipment.},
keywords={},
doi={10.1587/transcom.2018TTP0003},
ISSN={1745-1345},
month={August},}
Salinan
TY - JOUR
TI - Learning-Based, Distributed Spectrum Observation System for Dynamic Spectrum Sharing in the 5G Era and Beyond
T2 - IEICE TRANSACTIONS on Communications
SP - 1526
EP - 1537
AU - Masaki KITSUNEZUKA
AU - Kenta TSUKAMOTO
AU - Jun SAKAI
AU - Taichi OHTSUJI
AU - Kazuaki KUNIHIRO
PY - 2019
DO - 10.1587/transcom.2018TTP0003
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E102-B
IS - 8
JA - IEICE TRANSACTIONS on Communications
Y1 - August 2019
AB - Dynamic sharing of limited radio spectrum resources is expected to satisfy the increasing demand for spectrum resources in the upcoming 5th generation mobile communication system (5G) era and beyond. Distributed real-time spectrum sensing is a key enabler of dynamic spectrum sharing, but the costs incurred in observed-data transmission are a critical problem, especially when massive numbers of spectrum sensors are deployed. To cope with this issue, the proposed spectrum sensors learn the ambient radio environment in real-time and create a time-spectral model whose parameters are shared with servers operating in the edge-computing layer. This process makes it possible to significantly reduce the communication cost of the sensors because frequent data transmission is no longer needed while enabling the edge servers to keep up on the current status of the radio environment. On the basis of the created time-spectral model, sharable spectrum resources are dynamically harvested and allocated in terms of geospatial, temporal, and frequency-spectral domains when accepting an application for secondary-spectrum use. A web-based prototype spectrum management system has been implemented using ten servers and dozens of sensors. Measured results show that the proposed approach can reduce data traffic between the sensors and servers by 97%, achieving an average data rate of 10 kilobits per second (kbps). In addition, the basic operation flow of the prototype has been verified through a field experiment conducted at a manufacturing facility and a proof-of-concept experiment of dynamic-spectrum sharing using wireless local-area-network equipment.
ER -