The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
pandangan teks lengkap
114
Dalam sistem pesawat tanpa pemandu (UAS), beberapa kenderaan udara tanpa pemandu (UAV) yang bergerak pada halaju 40-100km/j dan dengan ketinggian 150-1,000m akan digunakan untuk meliputi kawasan perkhidmatan yang luas. Oleh itu, anjakan Doppler berlaku dalam frekuensi pembawa isyarat yang dihantar dan diterima disebabkan oleh perubahan dalam halaju garis pandang antara UAV dan terminal daratan. Dengan memerhati berbilang nilai anjakan Doppler untuk UAV yang berbeza atau memerhati satu UAV pada waktu tempatan yang berbeza, adalah mungkin untuk mengesan kedudukan pengguna di atas tanah. Kami menjalankan simulasi komputer untuk menilai ketepatan pengesanan kedudukan pengguna dan pengagihan anjakan Doppler dalam beberapa model penerbangan. Selanjutnya, indeks ketepatan kedudukan (PAI), yang boleh digunakan sebagai indeks untuk ketepatan pengesanan kedudukan, telah dicadangkan sebagai nilai mutlak kosinus hasil dalam antara dua vektor kecerunan yang dibentuk oleh anjakan Doppler untuk menilai hubungan antara lokasi UAV dan kedudukan pengguna. Dalam kajian ini, kaedah anggaran ralat kedudukan maksimum yang berkaitan dengan PAI dicadangkan untuk menganggarkan ketepatan pengesanan kedudukan. Selanjutnya, simulasi komputer dengan mengandaikan satu UAV terbang pada laluan melengkung seperti laluan sinusoidal dengan kitaran berbeza dijalankan untuk menjelaskan keberkesanan laluan penerbangan dalam aspek ketepatan kedudukan dan kependaman dengan membandingkan dengan model pertarungan garis lurus konvensional menggunakan PAI. dan kaedah anggaran ralat kedudukan maksimum yang dicadangkan.
Hiroyasu ISHIKAWA
Nihon University
Yuki HORIKAWA
Nihon University
Hideyuki SHINONAGA
Toyo University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Hiroyasu ISHIKAWA, Yuki HORIKAWA, Hideyuki SHINONAGA, "Maximum Positioning Error Estimation Method for Detecting User Positions with Unmanned Aerial Vehicle based on Doppler Shifts" in IEICE TRANSACTIONS on Communications,
vol. E103-B, no. 10, pp. 1069-1077, October 2020, doi: 10.1587/transcom.2019CBP0007.
Abstract: In the typical unmanned aircraft system (UAS), several unmanned aerial vehicles (UAVs) traveling at a velocity of 40-100km/h and with altitudes of 150-1,000m will be used to cover a wide service area. Therefore, Doppler shifts occur in the carrier frequencies of the transmitted and received signals due to changes in the line-of-sight velocity between the UAVs and the terrestrial terminal. By observing multiple Doppler shift values for different UAVs or observing a single UAV at different local times, it is possible to detect the user position on the ground. We conducted computer simulations for evaluating user position detection accuracy and Doppler shift distribution in several flight models. Further, a positioning accuracy index (PAI), which can be used as an index for position detection accuracy, was proposed as the absolute value of cosine of the inner product between two gradient vectors formed by Doppler shifts to evaluate the relationship between the location of UAVs and the position of the user. In this study, a maximum positioning error estimation method related to the PAI is proposed to approximate the position detection accuracy. Further, computer simulations assuming a single UAV flying on the curved routes such as sinusoidal routes with different cycles are conducted to clarify the effectiveness of the flight route in the aspects of positioning accuracy and latency by comparing with the conventional straight line fight model using the PAI and the proposed maximum positioning error estimation method.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.2019CBP0007/_p
Salinan
@ARTICLE{e103-b_10_1069,
author={Hiroyasu ISHIKAWA, Yuki HORIKAWA, Hideyuki SHINONAGA, },
journal={IEICE TRANSACTIONS on Communications},
title={Maximum Positioning Error Estimation Method for Detecting User Positions with Unmanned Aerial Vehicle based on Doppler Shifts},
year={2020},
volume={E103-B},
number={10},
pages={1069-1077},
abstract={In the typical unmanned aircraft system (UAS), several unmanned aerial vehicles (UAVs) traveling at a velocity of 40-100km/h and with altitudes of 150-1,000m will be used to cover a wide service area. Therefore, Doppler shifts occur in the carrier frequencies of the transmitted and received signals due to changes in the line-of-sight velocity between the UAVs and the terrestrial terminal. By observing multiple Doppler shift values for different UAVs or observing a single UAV at different local times, it is possible to detect the user position on the ground. We conducted computer simulations for evaluating user position detection accuracy and Doppler shift distribution in several flight models. Further, a positioning accuracy index (PAI), which can be used as an index for position detection accuracy, was proposed as the absolute value of cosine of the inner product between two gradient vectors formed by Doppler shifts to evaluate the relationship between the location of UAVs and the position of the user. In this study, a maximum positioning error estimation method related to the PAI is proposed to approximate the position detection accuracy. Further, computer simulations assuming a single UAV flying on the curved routes such as sinusoidal routes with different cycles are conducted to clarify the effectiveness of the flight route in the aspects of positioning accuracy and latency by comparing with the conventional straight line fight model using the PAI and the proposed maximum positioning error estimation method.},
keywords={},
doi={10.1587/transcom.2019CBP0007},
ISSN={1745-1345},
month={October},}
Salinan
TY - JOUR
TI - Maximum Positioning Error Estimation Method for Detecting User Positions with Unmanned Aerial Vehicle based on Doppler Shifts
T2 - IEICE TRANSACTIONS on Communications
SP - 1069
EP - 1077
AU - Hiroyasu ISHIKAWA
AU - Yuki HORIKAWA
AU - Hideyuki SHINONAGA
PY - 2020
DO - 10.1587/transcom.2019CBP0007
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E103-B
IS - 10
JA - IEICE TRANSACTIONS on Communications
Y1 - October 2020
AB - In the typical unmanned aircraft system (UAS), several unmanned aerial vehicles (UAVs) traveling at a velocity of 40-100km/h and with altitudes of 150-1,000m will be used to cover a wide service area. Therefore, Doppler shifts occur in the carrier frequencies of the transmitted and received signals due to changes in the line-of-sight velocity between the UAVs and the terrestrial terminal. By observing multiple Doppler shift values for different UAVs or observing a single UAV at different local times, it is possible to detect the user position on the ground. We conducted computer simulations for evaluating user position detection accuracy and Doppler shift distribution in several flight models. Further, a positioning accuracy index (PAI), which can be used as an index for position detection accuracy, was proposed as the absolute value of cosine of the inner product between two gradient vectors formed by Doppler shifts to evaluate the relationship between the location of UAVs and the position of the user. In this study, a maximum positioning error estimation method related to the PAI is proposed to approximate the position detection accuracy. Further, computer simulations assuming a single UAV flying on the curved routes such as sinusoidal routes with different cycles are conducted to clarify the effectiveness of the flight route in the aspects of positioning accuracy and latency by comparing with the conventional straight line fight model using the PAI and the proposed maximum positioning error estimation method.
ER -