The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
pandangan teks lengkap
101
Makalah ini meringkaskan kajian terbaru kami tentang seni bina, penyepaduan fotonik, pengesahan sistem dan analisis prestasi rangkaian bagi suis rangkaian optik interkoneksi kependaman rendah yang fleksibel (Flex-LIONS) untuk aplikasi pusat data dan pengkomputeran berprestasi tinggi (HPC). Flex-LIONS memanfaatkan sifat penghalaan panjang gelombang semua-ke-semua dalam penghala pandu gelombang tersusun (AWGR) digabungkan dengan penapisan tambah/jatuh berasaskan mikroring resonator (MRR) dan pensuisan spatial berbilang panjang gelombang untuk membolehkan topologi dan kebolehkonfigurasian lebar jalur untuk menyesuaikan antara sambungan kepada profil trafik yang berbeza. Dengan mengeksploitasi berbilang julat spektrum percuma AWGR, ia juga mungkin untuk menyediakan konfigurasi semula sambil mengekalkan kesalinghubungan semua-ke-semua diameter minimum. Kami melaporkan hasil percubaan pada reka bentuk, fabrikasi dan ujian sistem bagi cip Flex-LIONS silikon fotonik (SiPh) 8×8 yang menunjukkan komunikasi semua-ke-semua bebas ralat dan konfigurasi semula yang mengeksploitasi julat spektrum percuma yang berbeza (FSR0 dan FSR1, masing-masing). Selepas konfigurasi semula dalam FSR1, lebar jalur antara pasangan nod yang dipilih ditingkatkan daripada 50Gb/s kepada 125Gb/s manakala semua kesalinghubungan pada 25Gb/s dikekalkan menggunakan FSR0. Akhir sekali, kami menyiasat penggunaan Flex-LIONS dalam dua senario rangkaian berbeza. Pertama, simulasi rangkaian untuk senario komunikasi antara rak pusat data 256-nod menunjukkan potensi kependaman dan faedah tenaga apabila menggunakan Flex-LIONS untuk konfigurasi semula optik berdasarkan profil trafik yang berbeza (seni bina pokok lemak warisan digunakan untuk perbandingan). Kedua, kami menunjukkan faedah memanfaatkan dua FSR dalam sistem pengkomputeran 8-teras 64-nod untuk menyediakan konfigurasi semula untuk nod hotspot sambil mengekalkan kesalinghubungan semua-ke-semua diameter minimum.
Roberto PROIETTI
University of California
Xian XIAO
University of California
Marjan FARIBORZ
University of California
Pouya FOTOUHI
University of California
Yu ZHANG
University of California
S. J. Ben YOO
University of California
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Roberto PROIETTI, Xian XIAO, Marjan FARIBORZ, Pouya FOTOUHI, Yu ZHANG, S. J. Ben YOO, "Flex-LIONS: A Silicon Photonic Bandwidth-Reconfigurable Optical Switch Fabric" in IEICE TRANSACTIONS on Communications,
vol. E103-B, no. 11, pp. 1190-1198, November 2020, doi: 10.1587/transcom.2019OBI0004.
Abstract: This paper summarizes our recent studies on architecture, photonic integration, system validation and networking performance analysis of a flexible low-latency interconnect optical network switch (Flex-LIONS) for datacenter and high-performance computing (HPC) applications. Flex-LIONS leverages the all-to-all wavelength routing property in arrayed waveguide grating routers (AWGRs) combined with microring resonator (MRR)-based add/drop filtering and multi-wavelength spatial switching to enable topology and bandwidth reconfigurability to adapt the interconnection to different traffic profiles. By exploiting the multiple free spectral ranges of AWGRs, it is also possible to provide reconfiguration while maintaining minimum-diameter all-to-all interconnectivity. We report experimental results on the design, fabrication, and system testing of 8×8 silicon photonic (SiPh) Flex-LIONS chips demonstrating error-free all-to-all communication and reconfiguration exploiting different free spectral ranges (FSR0 and FSR1, respectively). After reconfiguration in FSR1, the bandwidth between the selected pair of nodes is increased from 50Gb/s to 125Gb/s while an all interconnectivity at 25Gb/s is maintained using FSR0. Finally, we investigate the use of Flex-LIONS in two different networking scenarios. First, networking simulations for a 256-node datacenter inter-rack communication scenario show the potential latency and energy benefits when using Flex-LIONS for optical reconfiguration based on different traffic profiles (a legacy fat-tree architecture is used for comparison). Second, we demonstrate the benefits of leveraging two FSRs in an 8-node 64-core computing system to provide reconfiguration for the hotspot nodes while maintaining minimum-diameter all-to-all interconnectivity.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.2019OBI0004/_p
Salinan
@ARTICLE{e103-b_11_1190,
author={Roberto PROIETTI, Xian XIAO, Marjan FARIBORZ, Pouya FOTOUHI, Yu ZHANG, S. J. Ben YOO, },
journal={IEICE TRANSACTIONS on Communications},
title={Flex-LIONS: A Silicon Photonic Bandwidth-Reconfigurable Optical Switch Fabric},
year={2020},
volume={E103-B},
number={11},
pages={1190-1198},
abstract={This paper summarizes our recent studies on architecture, photonic integration, system validation and networking performance analysis of a flexible low-latency interconnect optical network switch (Flex-LIONS) for datacenter and high-performance computing (HPC) applications. Flex-LIONS leverages the all-to-all wavelength routing property in arrayed waveguide grating routers (AWGRs) combined with microring resonator (MRR)-based add/drop filtering and multi-wavelength spatial switching to enable topology and bandwidth reconfigurability to adapt the interconnection to different traffic profiles. By exploiting the multiple free spectral ranges of AWGRs, it is also possible to provide reconfiguration while maintaining minimum-diameter all-to-all interconnectivity. We report experimental results on the design, fabrication, and system testing of 8×8 silicon photonic (SiPh) Flex-LIONS chips demonstrating error-free all-to-all communication and reconfiguration exploiting different free spectral ranges (FSR0 and FSR1, respectively). After reconfiguration in FSR1, the bandwidth between the selected pair of nodes is increased from 50Gb/s to 125Gb/s while an all interconnectivity at 25Gb/s is maintained using FSR0. Finally, we investigate the use of Flex-LIONS in two different networking scenarios. First, networking simulations for a 256-node datacenter inter-rack communication scenario show the potential latency and energy benefits when using Flex-LIONS for optical reconfiguration based on different traffic profiles (a legacy fat-tree architecture is used for comparison). Second, we demonstrate the benefits of leveraging two FSRs in an 8-node 64-core computing system to provide reconfiguration for the hotspot nodes while maintaining minimum-diameter all-to-all interconnectivity.},
keywords={},
doi={10.1587/transcom.2019OBI0004},
ISSN={1745-1345},
month={November},}
Salinan
TY - JOUR
TI - Flex-LIONS: A Silicon Photonic Bandwidth-Reconfigurable Optical Switch Fabric
T2 - IEICE TRANSACTIONS on Communications
SP - 1190
EP - 1198
AU - Roberto PROIETTI
AU - Xian XIAO
AU - Marjan FARIBORZ
AU - Pouya FOTOUHI
AU - Yu ZHANG
AU - S. J. Ben YOO
PY - 2020
DO - 10.1587/transcom.2019OBI0004
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E103-B
IS - 11
JA - IEICE TRANSACTIONS on Communications
Y1 - November 2020
AB - This paper summarizes our recent studies on architecture, photonic integration, system validation and networking performance analysis of a flexible low-latency interconnect optical network switch (Flex-LIONS) for datacenter and high-performance computing (HPC) applications. Flex-LIONS leverages the all-to-all wavelength routing property in arrayed waveguide grating routers (AWGRs) combined with microring resonator (MRR)-based add/drop filtering and multi-wavelength spatial switching to enable topology and bandwidth reconfigurability to adapt the interconnection to different traffic profiles. By exploiting the multiple free spectral ranges of AWGRs, it is also possible to provide reconfiguration while maintaining minimum-diameter all-to-all interconnectivity. We report experimental results on the design, fabrication, and system testing of 8×8 silicon photonic (SiPh) Flex-LIONS chips demonstrating error-free all-to-all communication and reconfiguration exploiting different free spectral ranges (FSR0 and FSR1, respectively). After reconfiguration in FSR1, the bandwidth between the selected pair of nodes is increased from 50Gb/s to 125Gb/s while an all interconnectivity at 25Gb/s is maintained using FSR0. Finally, we investigate the use of Flex-LIONS in two different networking scenarios. First, networking simulations for a 256-node datacenter inter-rack communication scenario show the potential latency and energy benefits when using Flex-LIONS for optical reconfiguration based on different traffic profiles (a legacy fat-tree architecture is used for comparison). Second, we demonstrate the benefits of leveraging two FSRs in an 8-node 64-core computing system to provide reconfiguration for the hotspot nodes while maintaining minimum-diameter all-to-all interconnectivity.
ER -