The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Seni bina kedudukan Sistem Satelit Navigasi Global (CB-GNSS) berasaskan awan yang memunggah sebahagian daripada pengiraan kedudukan GNSS kepada infrastruktur awan/tepi telah dikaji sebagai seni bina yang menambah fungsi bernilai melalui rangkaian. Kebaikan penentududukan CB-GNSS ialah ia boleh memanfaatkan sumber pengkomputeran yang banyak di awan/tepi untuk menambah fungsi unik pada pengiraan kedudukan dan mengurangkan kos terminal penerima GNSS. Isu dalam penentududukan GNSS ialah kemerosotan dalam ketepatan kedudukan dalam persekitaran penerimaan yang tidak ideal di mana ruang terbuka terhad dan beberapa isyarat satelit disekat. Untuk menyelesaikan isu ini, kami mencadangkan algoritma pemilihan satelit yang mengalih keluar komponen berbilang laluan isyarat satelit yang disekat secara berkesan, yang merupakan punca utama penurunan ketepatan kedudukan. Kami membina persekitaran ujian Bukti Konsep (PoC) seni bina kedudukan CB-GNSS yang melaksanakan algoritma pemilihan satelit yang dicadangkan dan menjalankan eksperimen untuk mengesahkan prestasi kedudukannya dalam keadaan statik dan dinamik yang tidak ideal. Untuk penentududukan jangka panjang statik dalam persekitaran penerimaan isyarat berbilang laluan, kami mendapati bahawa penentududukan CB-GNSS dengan algoritma yang dicadangkan membolehkan terminal penerima GNSS hujung rendah untuk memadankan prestasi kedudukan yang setanding dengan terminal penerima GNSS mewah dari segi FIX kadar. Dalam eksperimen pemanduan traktor autonomi di jalan ladang yang melintasi penahan angin, kami berjaya mengawal pergerakan autonomi traktor dengan mengekalkan kedudukan yang sangat tepat walaupun dalam penahan angin. Keputusan ini menunjukkan bahawa algoritma pemilihan satelit yang dicadangkan mencapai prestasi kedudukan tinggi walaupun dalam persekitaran penerimaan isyarat satelit yang lemah.
Seiji YOSHIDA
NTT Corporation
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Seiji YOSHIDA, "Study on Cloud-Based GNSS Positioning Architecture with Satellite Selection Algorithm and Report of Field Experiments" in IEICE TRANSACTIONS on Communications,
vol. E105-B, no. 4, pp. 388-398, April 2022, doi: 10.1587/transcom.2021WWP0006.
Abstract: Cloud-based Global Navigation Satellite Systems (CB-GNSS) positioning architecture that offloads part of GNSS positioning computation to cloud/edge infrastructure has been studied as an architecture that adds valued functions via the network. The merits of CB-GNSS positioning are that it can take advantage of the abundant computing resources on the cloud/edge to add unique functions to the positioning calculation and reduce the cost of GNSS receiver terminals. An issue in GNSS positioning is the degradation in positioning accuracy in unideal reception environments where open space is limited and some satellite signals are blocked. To resolve this issue, we propose a satellite selection algorithm that effectively removes the multipath components of blocked satellite signals, which are the main cause of drop in positioning accuracy. We build a Proof of Concept (PoC) test environment of CB-GNSS positioning architecture implementing the proposed satellite selection algorithm and conduct experiments to verify its positioning performance in unideal static and dynamic conditions. For static long-term positioning in a multipath signal reception environment, we found that CB-GNSS positioning with the proposed algorithm enables a low-end GNSS receiver terminal to match the positioning performance comparable to high-end GNSS receiver terminals in terms of the FIX rate. In an autonomous tractor driving experiment on a farm road crossing a windbreak, we succeeded in controlling the tractor's autonomous movement by maintaining highly precise positioning even in the windbreak. These results indicates that the proposed satellite selection algorithm achieves high positioning performance even in poor satellite signal reception environments.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.2021WWP0006/_p
Salinan
@ARTICLE{e105-b_4_388,
author={Seiji YOSHIDA, },
journal={IEICE TRANSACTIONS on Communications},
title={Study on Cloud-Based GNSS Positioning Architecture with Satellite Selection Algorithm and Report of Field Experiments},
year={2022},
volume={E105-B},
number={4},
pages={388-398},
abstract={Cloud-based Global Navigation Satellite Systems (CB-GNSS) positioning architecture that offloads part of GNSS positioning computation to cloud/edge infrastructure has been studied as an architecture that adds valued functions via the network. The merits of CB-GNSS positioning are that it can take advantage of the abundant computing resources on the cloud/edge to add unique functions to the positioning calculation and reduce the cost of GNSS receiver terminals. An issue in GNSS positioning is the degradation in positioning accuracy in unideal reception environments where open space is limited and some satellite signals are blocked. To resolve this issue, we propose a satellite selection algorithm that effectively removes the multipath components of blocked satellite signals, which are the main cause of drop in positioning accuracy. We build a Proof of Concept (PoC) test environment of CB-GNSS positioning architecture implementing the proposed satellite selection algorithm and conduct experiments to verify its positioning performance in unideal static and dynamic conditions. For static long-term positioning in a multipath signal reception environment, we found that CB-GNSS positioning with the proposed algorithm enables a low-end GNSS receiver terminal to match the positioning performance comparable to high-end GNSS receiver terminals in terms of the FIX rate. In an autonomous tractor driving experiment on a farm road crossing a windbreak, we succeeded in controlling the tractor's autonomous movement by maintaining highly precise positioning even in the windbreak. These results indicates that the proposed satellite selection algorithm achieves high positioning performance even in poor satellite signal reception environments.},
keywords={},
doi={10.1587/transcom.2021WWP0006},
ISSN={1745-1345},
month={April},}
Salinan
TY - JOUR
TI - Study on Cloud-Based GNSS Positioning Architecture with Satellite Selection Algorithm and Report of Field Experiments
T2 - IEICE TRANSACTIONS on Communications
SP - 388
EP - 398
AU - Seiji YOSHIDA
PY - 2022
DO - 10.1587/transcom.2021WWP0006
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E105-B
IS - 4
JA - IEICE TRANSACTIONS on Communications
Y1 - April 2022
AB - Cloud-based Global Navigation Satellite Systems (CB-GNSS) positioning architecture that offloads part of GNSS positioning computation to cloud/edge infrastructure has been studied as an architecture that adds valued functions via the network. The merits of CB-GNSS positioning are that it can take advantage of the abundant computing resources on the cloud/edge to add unique functions to the positioning calculation and reduce the cost of GNSS receiver terminals. An issue in GNSS positioning is the degradation in positioning accuracy in unideal reception environments where open space is limited and some satellite signals are blocked. To resolve this issue, we propose a satellite selection algorithm that effectively removes the multipath components of blocked satellite signals, which are the main cause of drop in positioning accuracy. We build a Proof of Concept (PoC) test environment of CB-GNSS positioning architecture implementing the proposed satellite selection algorithm and conduct experiments to verify its positioning performance in unideal static and dynamic conditions. For static long-term positioning in a multipath signal reception environment, we found that CB-GNSS positioning with the proposed algorithm enables a low-end GNSS receiver terminal to match the positioning performance comparable to high-end GNSS receiver terminals in terms of the FIX rate. In an autonomous tractor driving experiment on a farm road crossing a windbreak, we succeeded in controlling the tractor's autonomous movement by maintaining highly precise positioning even in the windbreak. These results indicates that the proposed satellite selection algorithm achieves high positioning performance even in poor satellite signal reception environments.
ER -