The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Pembentukan pancaran buta memainkan peranan penting dalam Sistem berbilang input berbilang output (MIMO), radar, radio kognitif dan pengenalan sistem. Dalam makalah ini, kami mencadangkan algoritma baharu untuk algoritma pembentuk pancaran buta berbilang berdasarkan algoritma modulus pemalar kuasa dua terkecil (LSCMA). Kaedah baharu terdiri daripada tiga bahagian berikut: (a) pembentukan pancaran satu isyarat dengan LSCMA. (b) anggaran arah ketibaan (DOA) bagi isyarat yang tinggal dengan mengakar polinomial vektor berat. (c) pembentukan pancaran isyarat yang tinggal dengan kaedah varians minimum (LCMV) kekangan linear. Selepas penumpuan LSCMA, satu isyarat ditangkap dan sudut ketibaan isyarat yang tinggal boleh diperoleh dengan mengakar polinomial vektor berat. Oleh itu, pembentukan pancaran boleh diwujudkan dengan cepat untuk isyarat yang tinggal menggunakan kaedah LCMV. Pada masa yang sama DOA isyarat juga boleh diperolehi. Hasil simulasi menunjukkan prestasi kaedah yang dibentangkan.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Yan GUO, Ning LI, Myoung-Seob LIM, Jin-Long WANG, "Multiple Blind Beamforming Based on LSCMA" in IEICE TRANSACTIONS on Communications,
vol. E92-B, no. 8, pp. 2708-2713, August 2009, doi: 10.1587/transcom.E92.B.2708.
Abstract: Blind beamforming plays an important role in multiple-input multiple-output (MIMO) Systems, radar, cognitive radio, and system identification. In this paper, we propose a new algorithm for multiple blind beamforming algorithm based on the least square constant modulus algorithm (LSCMA). The new method consists of the following three parts: (a) beamforming of one signal with LSCMA. (b) direction-of-arrival (DOA) estimation of the remaining signals by rooting the weight vector polynomial. (c) beamforming of the remaining signals with linear constraints minimum variance (LCMV) method. After the convergence of LSCMA, one signal is captured and the arrival angles of the remaining signals can be obtained by rooting the weight vector polynomial. Therefore, beamforming can be quickly established for the remaining signals using LCMV method. Simultaneously the DOA of the signals can also be obtained. Simulation results show the performance of the presented method.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.E92.B.2708/_p
Salinan
@ARTICLE{e92-b_8_2708,
author={Yan GUO, Ning LI, Myoung-Seob LIM, Jin-Long WANG, },
journal={IEICE TRANSACTIONS on Communications},
title={Multiple Blind Beamforming Based on LSCMA},
year={2009},
volume={E92-B},
number={8},
pages={2708-2713},
abstract={Blind beamforming plays an important role in multiple-input multiple-output (MIMO) Systems, radar, cognitive radio, and system identification. In this paper, we propose a new algorithm for multiple blind beamforming algorithm based on the least square constant modulus algorithm (LSCMA). The new method consists of the following three parts: (a) beamforming of one signal with LSCMA. (b) direction-of-arrival (DOA) estimation of the remaining signals by rooting the weight vector polynomial. (c) beamforming of the remaining signals with linear constraints minimum variance (LCMV) method. After the convergence of LSCMA, one signal is captured and the arrival angles of the remaining signals can be obtained by rooting the weight vector polynomial. Therefore, beamforming can be quickly established for the remaining signals using LCMV method. Simultaneously the DOA of the signals can also be obtained. Simulation results show the performance of the presented method.},
keywords={},
doi={10.1587/transcom.E92.B.2708},
ISSN={1745-1345},
month={August},}
Salinan
TY - JOUR
TI - Multiple Blind Beamforming Based on LSCMA
T2 - IEICE TRANSACTIONS on Communications
SP - 2708
EP - 2713
AU - Yan GUO
AU - Ning LI
AU - Myoung-Seob LIM
AU - Jin-Long WANG
PY - 2009
DO - 10.1587/transcom.E92.B.2708
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E92-B
IS - 8
JA - IEICE TRANSACTIONS on Communications
Y1 - August 2009
AB - Blind beamforming plays an important role in multiple-input multiple-output (MIMO) Systems, radar, cognitive radio, and system identification. In this paper, we propose a new algorithm for multiple blind beamforming algorithm based on the least square constant modulus algorithm (LSCMA). The new method consists of the following three parts: (a) beamforming of one signal with LSCMA. (b) direction-of-arrival (DOA) estimation of the remaining signals by rooting the weight vector polynomial. (c) beamforming of the remaining signals with linear constraints minimum variance (LCMV) method. After the convergence of LSCMA, one signal is captured and the arrival angles of the remaining signals can be obtained by rooting the weight vector polynomial. Therefore, beamforming can be quickly established for the remaining signals using LCMV method. Simultaneously the DOA of the signals can also be obtained. Simulation results show the performance of the presented method.
ER -