The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Kertas kerja ini menganalisis gelagat sementara vektor polarisasi mod penyebaran (PMD) untuk model vektor birefringence Foschini dan Poole. Kami mendapati penyelesaian asimptotik bagi persamaan Fokker-Planck sepadan yang mewakili penyelesaian sebagai superposisi komponen sudut yang dicirikan oleh polinomial Legendre. Ekor pengedaran untuk magnitud vektor PMD berkembang perlahan-lahan kepada Maxwellian disebabkan oleh gandingan baki antara komponen sudut bersebelahan. Khususnya, ekor pengedaran untuk magnitud vektor PMD terletak jauh di bawah padanan Maxwellian semasa sementara.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Jae-Seung LEE, "Analysis of the Polarization-Mode-Dispersion Vector Distribution for the Foschini and Poole's Birefringence Vector Model" in IEICE TRANSACTIONS on Communications,
vol. E92-B, no. 10, pp. 3111-3114, October 2009, doi: 10.1587/transcom.E92.B.3111.
Abstract: This paper analyzes transient behaviors of the polarization-mode-dispersion (PMD) vector for the Foschini and Poole's birefringence vector model. We find an asymptotic solution of the corresponding Fokker-Planck equation representing the solution as a superposition of angular components characterized by the Legendre polynomials. The distribution tail for the PMD vector magnitude evolves slowly to the Maxwellian owing to the residual couplings between adjacent angular components. Of particular interest, the distribution tail for the PMD vector magnitude lies well below the Maxwellian fit during the transient.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.E92.B.3111/_p
Salinan
@ARTICLE{e92-b_10_3111,
author={Jae-Seung LEE, },
journal={IEICE TRANSACTIONS on Communications},
title={Analysis of the Polarization-Mode-Dispersion Vector Distribution for the Foschini and Poole's Birefringence Vector Model},
year={2009},
volume={E92-B},
number={10},
pages={3111-3114},
abstract={This paper analyzes transient behaviors of the polarization-mode-dispersion (PMD) vector for the Foschini and Poole's birefringence vector model. We find an asymptotic solution of the corresponding Fokker-Planck equation representing the solution as a superposition of angular components characterized by the Legendre polynomials. The distribution tail for the PMD vector magnitude evolves slowly to the Maxwellian owing to the residual couplings between adjacent angular components. Of particular interest, the distribution tail for the PMD vector magnitude lies well below the Maxwellian fit during the transient.},
keywords={},
doi={10.1587/transcom.E92.B.3111},
ISSN={1745-1345},
month={October},}
Salinan
TY - JOUR
TI - Analysis of the Polarization-Mode-Dispersion Vector Distribution for the Foschini and Poole's Birefringence Vector Model
T2 - IEICE TRANSACTIONS on Communications
SP - 3111
EP - 3114
AU - Jae-Seung LEE
PY - 2009
DO - 10.1587/transcom.E92.B.3111
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E92-B
IS - 10
JA - IEICE TRANSACTIONS on Communications
Y1 - October 2009
AB - This paper analyzes transient behaviors of the polarization-mode-dispersion (PMD) vector for the Foschini and Poole's birefringence vector model. We find an asymptotic solution of the corresponding Fokker-Planck equation representing the solution as a superposition of angular components characterized by the Legendre polynomials. The distribution tail for the PMD vector magnitude evolves slowly to the Maxwellian owing to the residual couplings between adjacent angular components. Of particular interest, the distribution tail for the PMD vector magnitude lies well below the Maxwellian fit during the transient.
ER -