The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Reka bentuk baharu dan hasil percubaan antena Fermi jalur lebar ultra lebar yang diberi jalur mikro pada frekuensi gelombang milimeter dipersembahkan. Dengan menggunakan balun mikrojalur-ke-CPS baharu (atau peralihan), yang menyediakan lebar jalur yang lebih luas daripada balun satah konvensional, reka bentuk antena Fermi yang diberi jalur mikro dipermudahkan dengan sangat. Antena Fermi yang dicadangkan menunjukkan prestasi jalur lebar ultra untuk julat frekuensi 23 hingga lebih 58 GHz dengan keuntungan antena 12 hingga 14 dBi dan tahap sidelobe rendah. Reka bentuk ini menghasilkan penyelesaian yang sangat berkesan kepada pelbagai tatasusunan berfasa gelombang milimeter dan sistem pengimejan.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Dong-Sik WOO, Young-Gon KIM, Young-Ki CHO, Kang Wook KIM, "Ultra-Wideband Fermi Antenna Using Microstrip-to-CPS Balun" in IEICE TRANSACTIONS on Communications,
vol. E93-B, no. 8, pp. 2219-2222, August 2010, doi: 10.1587/transcom.E93.B.2219.
Abstract: A new design and experimental results of a microstrip-fed ultra-wideband Fermi antenna at millimeter-wave frequencies are presented. By utilizing a new microstrip-to-CPS balun (or transition), which provides wider bandwidth than conventional planar balun, the design of microstrip-fed Fermi antenna is greatly simplified. The proposed Fermi antenna demonstrates ultra-wideband performance for the frequency range of 23 to over 58 GHz with the antenna gain of 12 to 14 dBi and low sidelobe levels. This design yields highly effective solutions to various millimeter-wave phased-arrays and imaging systems.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.E93.B.2219/_p
Salinan
@ARTICLE{e93-b_8_2219,
author={Dong-Sik WOO, Young-Gon KIM, Young-Ki CHO, Kang Wook KIM, },
journal={IEICE TRANSACTIONS on Communications},
title={Ultra-Wideband Fermi Antenna Using Microstrip-to-CPS Balun},
year={2010},
volume={E93-B},
number={8},
pages={2219-2222},
abstract={A new design and experimental results of a microstrip-fed ultra-wideband Fermi antenna at millimeter-wave frequencies are presented. By utilizing a new microstrip-to-CPS balun (or transition), which provides wider bandwidth than conventional planar balun, the design of microstrip-fed Fermi antenna is greatly simplified. The proposed Fermi antenna demonstrates ultra-wideband performance for the frequency range of 23 to over 58 GHz with the antenna gain of 12 to 14 dBi and low sidelobe levels. This design yields highly effective solutions to various millimeter-wave phased-arrays and imaging systems.},
keywords={},
doi={10.1587/transcom.E93.B.2219},
ISSN={1745-1345},
month={August},}
Salinan
TY - JOUR
TI - Ultra-Wideband Fermi Antenna Using Microstrip-to-CPS Balun
T2 - IEICE TRANSACTIONS on Communications
SP - 2219
EP - 2222
AU - Dong-Sik WOO
AU - Young-Gon KIM
AU - Young-Ki CHO
AU - Kang Wook KIM
PY - 2010
DO - 10.1587/transcom.E93.B.2219
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E93-B
IS - 8
JA - IEICE TRANSACTIONS on Communications
Y1 - August 2010
AB - A new design and experimental results of a microstrip-fed ultra-wideband Fermi antenna at millimeter-wave frequencies are presented. By utilizing a new microstrip-to-CPS balun (or transition), which provides wider bandwidth than conventional planar balun, the design of microstrip-fed Fermi antenna is greatly simplified. The proposed Fermi antenna demonstrates ultra-wideband performance for the frequency range of 23 to over 58 GHz with the antenna gain of 12 to 14 dBi and low sidelobe levels. This design yields highly effective solutions to various millimeter-wave phased-arrays and imaging systems.
ER -