The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Keratan Rentas Radar (RCS) boleh diperoleh daripada data medan dekat dengan menggunakan kaedah transformasi RCS medan dekat ke medan jauh. Ralat fasa dalam data medan dekat menyebabkan kemerosotan ketepatan ramalan. Untuk mengatasi kesukaran, kami mencadangkan kaedah ramalan RCS medan jauh daripada data intensiti satu dimensi dalam medan dekat. Kaedah yang dicadangkan diperoleh dengan memanjangkan kaedah pengambilan fasa berdasarkan algoritma Gerchberg-Saxton dengan penggunaan ungkapan hubungan antara medan-hampir dan pekali serakan. RCS medan jauh boleh diramalkan daripada data keamatan medan bertaburan yang diukur pada dua julat berbeza. RCS medan jauh yang diramalkan oleh kaedah yang dicadangkan kira-kira bertepatan dengan yang dikira. Kaedah yang dicadangkan juga mempunyai kelebihan ketara daripada algoritma yang mudah dan cekap. Kaedah yang dicadangkan adalah bernilai dari sudut praktikal.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Yoshio INASAWA, Hiroaki MIYASHITA, Yoshihiko KONISHI, "RCS Prediction Method from One-Dimensional Intensity Data in Near-Field" in IEICE TRANSACTIONS on Electronics,
vol. E91-C, no. 7, pp. 1167-1170, July 2008, doi: 10.1093/ietele/e91-c.7.1167.
Abstract: Radar Cross Section (RCS) can be obtained from near-field data by using near-field to far-field RCS transformation methods. Phase errors in near-field data cause the degradation of the prediction accuracy. In order to overcome the difficulty, we propose the far-field RCS prediction method from one-dimensional intensity data in near-field. The proposed method is derived by extending the phase retrieval method based on the Gerchberg-Saxton algorithm with the use of the relational expression between near-fields and scattering coefficients. The far-field RCS can be predicted from the intensity data of scattered fields measured at two different ranges. The far-field RCS predicted by the proposed method approximately coincides with the computed one. The proposed method also has significant advantages of simple and efficient algorithm. The proposed method is valuable from a practical point of view.
URL: https://global.ieice.org/en_transactions/electronics/10.1093/ietele/e91-c.7.1167/_p
Salinan
@ARTICLE{e91-c_7_1167,
author={Yoshio INASAWA, Hiroaki MIYASHITA, Yoshihiko KONISHI, },
journal={IEICE TRANSACTIONS on Electronics},
title={RCS Prediction Method from One-Dimensional Intensity Data in Near-Field},
year={2008},
volume={E91-C},
number={7},
pages={1167-1170},
abstract={Radar Cross Section (RCS) can be obtained from near-field data by using near-field to far-field RCS transformation methods. Phase errors in near-field data cause the degradation of the prediction accuracy. In order to overcome the difficulty, we propose the far-field RCS prediction method from one-dimensional intensity data in near-field. The proposed method is derived by extending the phase retrieval method based on the Gerchberg-Saxton algorithm with the use of the relational expression between near-fields and scattering coefficients. The far-field RCS can be predicted from the intensity data of scattered fields measured at two different ranges. The far-field RCS predicted by the proposed method approximately coincides with the computed one. The proposed method also has significant advantages of simple and efficient algorithm. The proposed method is valuable from a practical point of view.},
keywords={},
doi={10.1093/ietele/e91-c.7.1167},
ISSN={1745-1353},
month={July},}
Salinan
TY - JOUR
TI - RCS Prediction Method from One-Dimensional Intensity Data in Near-Field
T2 - IEICE TRANSACTIONS on Electronics
SP - 1167
EP - 1170
AU - Yoshio INASAWA
AU - Hiroaki MIYASHITA
AU - Yoshihiko KONISHI
PY - 2008
DO - 10.1093/ietele/e91-c.7.1167
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E91-C
IS - 7
JA - IEICE TRANSACTIONS on Electronics
Y1 - July 2008
AB - Radar Cross Section (RCS) can be obtained from near-field data by using near-field to far-field RCS transformation methods. Phase errors in near-field data cause the degradation of the prediction accuracy. In order to overcome the difficulty, we propose the far-field RCS prediction method from one-dimensional intensity data in near-field. The proposed method is derived by extending the phase retrieval method based on the Gerchberg-Saxton algorithm with the use of the relational expression between near-fields and scattering coefficients. The far-field RCS can be predicted from the intensity data of scattered fields measured at two different ranges. The far-field RCS predicted by the proposed method approximately coincides with the computed one. The proposed method also has significant advantages of simple and efficient algorithm. The proposed method is valuable from a practical point of view.
ER -