The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Sifat kehelan dalam Telaga Kuantum InGaN/GaN dan GaN yang ditanam pada substrat GaN dan nilam pukal oleh pemendapan wap kimia metalorganik (MOCVD) telah dicirikan menggunakan cathodoluminescnece (CL), mikroskop elektron penghantaran (TEM), mikroskop daya atom (AFM) dan photoluminescence (PL). ). Ia telah ditunjukkan dengan jelas bahawa kehelan bertindak sebagai pusat penggabungan semula bukan sinaran dalam kedua-dua lapisan GaN dan InGaN jenis-n (tidak terdop dan Si-doped). Tambahan pula, panjang resapan pembawa minoriti yang sangat pendek merupakan parameter utama untuk menerangkan kecekapan pelepasan cahaya yang tinggi dalam diod pemancar cahaya (LED) berasaskan GaN yang disediakan pada substrat nilam. Di sisi lain keadaan band-tail dikesan dalam lapisan InGaN heteroepitaxial hanya dengan pengukuran PL pergantungan suhu. Selain itu, pemisahan fasa InGaN, yang terdiri daripada beberapa domain mikron, telah dihasilkan dalam keadaan pertumbuhan yang memihak kepada pertumbuhan lingkaran. Keputusan ini menunjukkan bahawa kehelan dalam lapisan InGaN bertindak sebagai pusat pencetus untuk pemisahan fasa InGaN yang menyebabkan kedua-dua turun naik komposisi dan pembentukan beberapa domain yang diasingkan fasa mikron. Lapisan InGaN homoepitaxial menunjukkan tingkah laku yang agak normal untuk semua pencirian.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Tomoya SUGAHARA, Shiro SAKAI, "Role of Dislocation in InGaN/GaN Quantum Wells Grown on Bulk GaN and Sapphire Substrates" in IEICE TRANSACTIONS on Electronics,
vol. E83-C, no. 4, pp. 598-604, April 2000, doi: .
Abstract: Dislocation properties in InGaN/GaN Quantum Wells and GaN grown on bulk GaN and sapphire substrates by metalorganic chemical vapor deposition (MOCVD) were characterized using cathodoluminescnece (CL), transmission electron microscopy (TEM), atomic force microscopy (AFM) and photoluminescence (PL). It was clearly demonstrated that dislocations act as nonradiative recombination centers in both n-type (undoped and Si-doped) GaN and InGaN layers. Furthermore the very short-minority carrier diffusion length was a key parameter to explain the high light emission efficiency in GaN-based light emitting diodes (LEDs) prepared on sapphire substrates. On the other side band-tail states were detected in the heteroepitaxial InGaN layers only by temperature dependence PL measurement. Additionally InGaN phase separation, which consists of few micron domains, has been produced under growth conditions which favors the spiral growth. These results indicate that the dislocations in the InGaN layers act as triggering centers for the InGaN phase separation which cause both a compositional fluctuation and the formation of few micron phase separated domains. The homoepitaxial InGaN layers showed however quite normal behaviors for all characterizations.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/e83-c_4_598/_p
Salinan
@ARTICLE{e83-c_4_598,
author={Tomoya SUGAHARA, Shiro SAKAI, },
journal={IEICE TRANSACTIONS on Electronics},
title={Role of Dislocation in InGaN/GaN Quantum Wells Grown on Bulk GaN and Sapphire Substrates},
year={2000},
volume={E83-C},
number={4},
pages={598-604},
abstract={Dislocation properties in InGaN/GaN Quantum Wells and GaN grown on bulk GaN and sapphire substrates by metalorganic chemical vapor deposition (MOCVD) were characterized using cathodoluminescnece (CL), transmission electron microscopy (TEM), atomic force microscopy (AFM) and photoluminescence (PL). It was clearly demonstrated that dislocations act as nonradiative recombination centers in both n-type (undoped and Si-doped) GaN and InGaN layers. Furthermore the very short-minority carrier diffusion length was a key parameter to explain the high light emission efficiency in GaN-based light emitting diodes (LEDs) prepared on sapphire substrates. On the other side band-tail states were detected in the heteroepitaxial InGaN layers only by temperature dependence PL measurement. Additionally InGaN phase separation, which consists of few micron domains, has been produced under growth conditions which favors the spiral growth. These results indicate that the dislocations in the InGaN layers act as triggering centers for the InGaN phase separation which cause both a compositional fluctuation and the formation of few micron phase separated domains. The homoepitaxial InGaN layers showed however quite normal behaviors for all characterizations.},
keywords={},
doi={},
ISSN={},
month={April},}
Salinan
TY - JOUR
TI - Role of Dislocation in InGaN/GaN Quantum Wells Grown on Bulk GaN and Sapphire Substrates
T2 - IEICE TRANSACTIONS on Electronics
SP - 598
EP - 604
AU - Tomoya SUGAHARA
AU - Shiro SAKAI
PY - 2000
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E83-C
IS - 4
JA - IEICE TRANSACTIONS on Electronics
Y1 - April 2000
AB - Dislocation properties in InGaN/GaN Quantum Wells and GaN grown on bulk GaN and sapphire substrates by metalorganic chemical vapor deposition (MOCVD) were characterized using cathodoluminescnece (CL), transmission electron microscopy (TEM), atomic force microscopy (AFM) and photoluminescence (PL). It was clearly demonstrated that dislocations act as nonradiative recombination centers in both n-type (undoped and Si-doped) GaN and InGaN layers. Furthermore the very short-minority carrier diffusion length was a key parameter to explain the high light emission efficiency in GaN-based light emitting diodes (LEDs) prepared on sapphire substrates. On the other side band-tail states were detected in the heteroepitaxial InGaN layers only by temperature dependence PL measurement. Additionally InGaN phase separation, which consists of few micron domains, has been produced under growth conditions which favors the spiral growth. These results indicate that the dislocations in the InGaN layers act as triggering centers for the InGaN phase separation which cause both a compositional fluctuation and the formation of few micron phase separated domains. The homoepitaxial InGaN layers showed however quite normal behaviors for all characterizations.
ER -