The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Kemajuan terbaru kami dalam meningkatkan prestasi laser GaInNAs disemak sepenuhnya di sini. Kami meningkatkan kualiti kristal GaInNA dengan mengoptimumkan keadaan untuk ditanam oleh epitaksi rasuk molekul sumber gas (MBE) menggunakan radikal N sebagai sumber N. Kami mendapati bahawa tetingkap suhu untuk mendapatkan GaInNA dengan kualiti kristal yang tinggi, morfologi permukaan yang baik, dan ciri-ciri photoluminescence (PL) yang baik adalah lebih kecil daripada untuk mendapatkan GaInAs jenis ini. Seperti atom dopan seperti Si atau Be dalam GaAs, radikal N yang dihasilkan oleh nyahcas RF mempunyai pekali melekat yang tinggi. Oleh itu penggunaannya berkesan apabila kita ingin meningkatkan dan mengawal kandungan N GaInNA. Kami mendapati bahawa ASH3-kadar alir terutamanya mempengaruhi kualiti kristal GaInNA dan bukannya penggabungan atom nitrogen. Kami juga menyiasat kesan penyepuhlindapan haba pada sifat optik lapisan GaInNAs yang ditanam dan mendapati bahawa ia sangat meningkatkan keamatan PL dan menghasilkan anjakan besar dalam panjang gelombang PL. Spektrum penyerapan lapisan pukal GaInNAs mendedahkan bahawa peralihan besar dalam panjang gelombang PL mungkin disebabkan oleh peralihan celah jalur dalam lapisan telaga GaInNAs, dan pengukuran katodeluminesen mendedahkan bahawa keamatan PL yang meningkat adalah disebabkan oleh peningkatan pelepasan yang lebih seragam dari segi ruang: keseragaman dari seluruh wilayah; sebagai perbandingan, kawasan seperti titik tidak seragam wujud dalam lapisan GaInNA yang telah berkembang. Mengoptimumkan keadaan pertumbuhan dan menggunakan kesan penyepuhlindapan haba, kami membuat laser telaga kuantum tunggal GaInNAs/GaAs 1.3-µm yang mempunyai suhu ciri tinggi (215 K) di bawah operasi berdenyut. Untuk pengetahuan kami, ini adalah suhu ciri tertinggi yang dilaporkan untuk pemancar tepi jalur 1.3-µm yang sesuai untuk digunakan dalam sistem komunikasi gentian optik. Penggunaan GaInNA sebagai lapisan aktif, oleh itu, sangat menjanjikan untuk fabrikasi diod laser panjang gelombang dengan prestasi suhu tinggi yang sangat baik.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Takeshi KITATANI, Masahiko KONDOW, Kouji NAKAHARA, Toshiaki TANAKA, "Recent Progress in GaInNAs Laser" in IEICE TRANSACTIONS on Electronics,
vol. E83-C, no. 6, pp. 830-837, June 2000, doi: .
Abstract: Our recent progress in improving the performance of the GaInNAs laser is fully reviewed here. We improved the crystal quality of GaInNAs by optimizing the conditions for its grown by gas-source molecular beam epitaxy (MBE) using N radicals as a N source. We found that the temperature window for obtaining GaInNAs with high crystal quality, good surface morphology, and good photoluminescence (PL) characteristics is smaller than that for obtaining this kind of GaInAs. Like dopant atoms such as Si or Be in GaAs, the N radicals produced by an RF discharge have a high sticking coefficient. Their use is therefore effective when we want to increase and control the N content of GaInNAs. We found that the AsH3-flow-rate mainly affected crystal quality of GaInNAs rather than incorporation of nitrogen atoms. We also investigated the effects of thermal annealing on the optical properties of as-grown GaInNAs layers and found that it greatly increased the PL intensity and produced the large shift in the PL wavelength. The absorption spectra of the GaInNAs bulk layer revealed that the large shift in the PL wavelength is probably caused by a bandgap shift in the GaInNAs well layer, and cathodeluminescence measurements revealed that the increased PL intensity is due to the improved emission being more uniform spatially: uniformity from the entire region; in comparison, nonuniform dot-like regions exist in an as-grown GaInNAs layer. Optimizing the growth conditions and using thermal annealing effect, we made a 1.3-µm GaInNAs/GaAs single-quantum-well laser that has a high characteristic temperature (215 K) under pulsed operation. To our knowledge, this is the highest characteristic temperature reported for a 1.3-µm band-edge emitter suitable for used in optical-fiber communication systems. The use of GaInNAs as an active layer is, therefore, very promising for the fabrication of long-wavelength laser diodes with excellent high-temperature performance.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/e83-c_6_830/_p
Salinan
@ARTICLE{e83-c_6_830,
author={Takeshi KITATANI, Masahiko KONDOW, Kouji NAKAHARA, Toshiaki TANAKA, },
journal={IEICE TRANSACTIONS on Electronics},
title={Recent Progress in GaInNAs Laser},
year={2000},
volume={E83-C},
number={6},
pages={830-837},
abstract={Our recent progress in improving the performance of the GaInNAs laser is fully reviewed here. We improved the crystal quality of GaInNAs by optimizing the conditions for its grown by gas-source molecular beam epitaxy (MBE) using N radicals as a N source. We found that the temperature window for obtaining GaInNAs with high crystal quality, good surface morphology, and good photoluminescence (PL) characteristics is smaller than that for obtaining this kind of GaInAs. Like dopant atoms such as Si or Be in GaAs, the N radicals produced by an RF discharge have a high sticking coefficient. Their use is therefore effective when we want to increase and control the N content of GaInNAs. We found that the AsH3-flow-rate mainly affected crystal quality of GaInNAs rather than incorporation of nitrogen atoms. We also investigated the effects of thermal annealing on the optical properties of as-grown GaInNAs layers and found that it greatly increased the PL intensity and produced the large shift in the PL wavelength. The absorption spectra of the GaInNAs bulk layer revealed that the large shift in the PL wavelength is probably caused by a bandgap shift in the GaInNAs well layer, and cathodeluminescence measurements revealed that the increased PL intensity is due to the improved emission being more uniform spatially: uniformity from the entire region; in comparison, nonuniform dot-like regions exist in an as-grown GaInNAs layer. Optimizing the growth conditions and using thermal annealing effect, we made a 1.3-µm GaInNAs/GaAs single-quantum-well laser that has a high characteristic temperature (215 K) under pulsed operation. To our knowledge, this is the highest characteristic temperature reported for a 1.3-µm band-edge emitter suitable for used in optical-fiber communication systems. The use of GaInNAs as an active layer is, therefore, very promising for the fabrication of long-wavelength laser diodes with excellent high-temperature performance.},
keywords={},
doi={},
ISSN={},
month={June},}
Salinan
TY - JOUR
TI - Recent Progress in GaInNAs Laser
T2 - IEICE TRANSACTIONS on Electronics
SP - 830
EP - 837
AU - Takeshi KITATANI
AU - Masahiko KONDOW
AU - Kouji NAKAHARA
AU - Toshiaki TANAKA
PY - 2000
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E83-C
IS - 6
JA - IEICE TRANSACTIONS on Electronics
Y1 - June 2000
AB - Our recent progress in improving the performance of the GaInNAs laser is fully reviewed here. We improved the crystal quality of GaInNAs by optimizing the conditions for its grown by gas-source molecular beam epitaxy (MBE) using N radicals as a N source. We found that the temperature window for obtaining GaInNAs with high crystal quality, good surface morphology, and good photoluminescence (PL) characteristics is smaller than that for obtaining this kind of GaInAs. Like dopant atoms such as Si or Be in GaAs, the N radicals produced by an RF discharge have a high sticking coefficient. Their use is therefore effective when we want to increase and control the N content of GaInNAs. We found that the AsH3-flow-rate mainly affected crystal quality of GaInNAs rather than incorporation of nitrogen atoms. We also investigated the effects of thermal annealing on the optical properties of as-grown GaInNAs layers and found that it greatly increased the PL intensity and produced the large shift in the PL wavelength. The absorption spectra of the GaInNAs bulk layer revealed that the large shift in the PL wavelength is probably caused by a bandgap shift in the GaInNAs well layer, and cathodeluminescence measurements revealed that the increased PL intensity is due to the improved emission being more uniform spatially: uniformity from the entire region; in comparison, nonuniform dot-like regions exist in an as-grown GaInNAs layer. Optimizing the growth conditions and using thermal annealing effect, we made a 1.3-µm GaInNAs/GaAs single-quantum-well laser that has a high characteristic temperature (215 K) under pulsed operation. To our knowledge, this is the highest characteristic temperature reported for a 1.3-µm band-edge emitter suitable for used in optical-fiber communication systems. The use of GaInNAs as an active layer is, therefore, very promising for the fabrication of long-wavelength laser diodes with excellent high-temperature performance.
ER -