The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Penulis telah membangunkan transistor mobiliti elektron tinggi (HEMT) V-band yang menggunakan lapisan filem nipis benzo-cyclo-butene (BCB) pada substrat GaAs. Memandangkan lapisan filem nipis BCB, yang boleh mengubah ketebalan bahagian sewenang-wenangnya pada litar, digunakan untuk MMIC ini, kedua-dua garis jalur mikro filem nipis (TFMS), menawarkan kelebihan fleksibiliti yang hebat dalam susun atur dan saiz kecil, dan pandu gelombang coplanar (CPW), menawarkan kelebihan kehilangan rendah, boleh digunakan mengikut tujuan MMIC. Di sini kami memperkenalkan empat jenis MMIC jalur-V yang kami reka: penguat hingar rendah (LNA), pengadun, pengayun terkawal voltan (VCO) dan penguat kuasa (PA). Talian penghantaran optimum dipilih daripada talian TFMS dan CPW untuk MMIC ini. Pengecilan LNA MMIC dan mixer MMIC telah dicapai dengan mengguna pakai talian TFMS, manakala penggunaan CPW membolehkan VCO MMIC mencapai prestasi tinggi. Keputusan ini menunjukkan bahawa adalah penting untuk memilih talian penghantaran yang optimum mengikut tujuan fungsi litar bagi setiap MMIC. Telah disahkan bahawa MMIC yang baru dibangunkan menggunakan lapisan dielektrik filem nipis BCB ini menarik untuk aplikasi gelombang milimeter.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Naoko ONO, Keiichi YAMAGUCHI, Minoru AMANO, Masayuki SUGIURA, Yuji ISEKI, Eiji TAKAGI, "V-Band HEMT MMICs Using BCB Thin-Film Layers on GaAs Substrates" in IEICE TRANSACTIONS on Electronics,
vol. E84-C, no. 10, pp. 1528-1534, October 2001, doi: .
Abstract: The authors have developed V-band high electron mobility transistor (HEMT) MMICs adopting benzo-cyclo-butene (BCB) thin-film layers on GaAs substrates. Since the BCB thin-film layers, which can change the thickness of arbitrary parts on a circuit, are used for these MMICs, both a thin-film microstrip (TFMS) line, offering the advantages of great flexibility in layout and small size, and a coplanar waveguide (CPW), offering the advantage of low loss, can be used according to the purpose of the MMIC. Here we introduce the four types of V-band MMICs that we fabricated: low noise amplifier (LNA), mixer, voltage controlled oscillator (VCO), and power amplifier (PA). The optimum transmission lines were chosen from the TFMS line and the CPW for these MMICs. Miniaturization of the LNA MMIC and the mixer MMIC were attained by adopting the TFMS line, whereas adoption of the CPW enabled the VCO MMIC to achieve high performance. These results indicate that it is important to choose the optimum transmission line according to the purpose of the circuit function for each MMIC. It was confirmed that these newly developed MMICs using the BCB thin-film dielectric layers are attractive for millimeter-wave applications.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/e84-c_10_1528/_p
Salinan
@ARTICLE{e84-c_10_1528,
author={Naoko ONO, Keiichi YAMAGUCHI, Minoru AMANO, Masayuki SUGIURA, Yuji ISEKI, Eiji TAKAGI, },
journal={IEICE TRANSACTIONS on Electronics},
title={V-Band HEMT MMICs Using BCB Thin-Film Layers on GaAs Substrates},
year={2001},
volume={E84-C},
number={10},
pages={1528-1534},
abstract={The authors have developed V-band high electron mobility transistor (HEMT) MMICs adopting benzo-cyclo-butene (BCB) thin-film layers on GaAs substrates. Since the BCB thin-film layers, which can change the thickness of arbitrary parts on a circuit, are used for these MMICs, both a thin-film microstrip (TFMS) line, offering the advantages of great flexibility in layout and small size, and a coplanar waveguide (CPW), offering the advantage of low loss, can be used according to the purpose of the MMIC. Here we introduce the four types of V-band MMICs that we fabricated: low noise amplifier (LNA), mixer, voltage controlled oscillator (VCO), and power amplifier (PA). The optimum transmission lines were chosen from the TFMS line and the CPW for these MMICs. Miniaturization of the LNA MMIC and the mixer MMIC were attained by adopting the TFMS line, whereas adoption of the CPW enabled the VCO MMIC to achieve high performance. These results indicate that it is important to choose the optimum transmission line according to the purpose of the circuit function for each MMIC. It was confirmed that these newly developed MMICs using the BCB thin-film dielectric layers are attractive for millimeter-wave applications.},
keywords={},
doi={},
ISSN={},
month={October},}
Salinan
TY - JOUR
TI - V-Band HEMT MMICs Using BCB Thin-Film Layers on GaAs Substrates
T2 - IEICE TRANSACTIONS on Electronics
SP - 1528
EP - 1534
AU - Naoko ONO
AU - Keiichi YAMAGUCHI
AU - Minoru AMANO
AU - Masayuki SUGIURA
AU - Yuji ISEKI
AU - Eiji TAKAGI
PY - 2001
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E84-C
IS - 10
JA - IEICE TRANSACTIONS on Electronics
Y1 - October 2001
AB - The authors have developed V-band high electron mobility transistor (HEMT) MMICs adopting benzo-cyclo-butene (BCB) thin-film layers on GaAs substrates. Since the BCB thin-film layers, which can change the thickness of arbitrary parts on a circuit, are used for these MMICs, both a thin-film microstrip (TFMS) line, offering the advantages of great flexibility in layout and small size, and a coplanar waveguide (CPW), offering the advantage of low loss, can be used according to the purpose of the MMIC. Here we introduce the four types of V-band MMICs that we fabricated: low noise amplifier (LNA), mixer, voltage controlled oscillator (VCO), and power amplifier (PA). The optimum transmission lines were chosen from the TFMS line and the CPW for these MMICs. Miniaturization of the LNA MMIC and the mixer MMIC were attained by adopting the TFMS line, whereas adoption of the CPW enabled the VCO MMIC to achieve high performance. These results indicate that it is important to choose the optimum transmission line according to the purpose of the circuit function for each MMIC. It was confirmed that these newly developed MMICs using the BCB thin-film dielectric layers are attractive for millimeter-wave applications.
ER -