The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Kaedah FDTD memerlukan analisis Fourier untuk mendapatkan medan frekuensi tunggal. Tambahan pula, spektrum frekuensi medan yang digunakan dalam kaedah FDTD biasanya mempunyai jalur lebar, dan semua medan dalam FDTD dianggap sebagai nombor nyata. Oleh itu, jika kebolehtelapan ε dan kebolehtelapan µ medium bergantung pada kekerapan, atau jika galangan permukaan yang digunakan untuk keadaan sempadan galangan permukaan (SIBC) bergantung pada frekuensi, kaedah FDTD menjadi sangat rumit kerana kamiran lilitan. Dalam teori elektromagnet, kita biasanya menganggap bahawa medan berayun secara sinusoid, dan medan dan ε dan μ ialah nombor kompleks. Faedah pengenalan nombor kompleks adalah sangat luas. Seperti yang kita lakukan dalam teori elektromagnet biasa, penulis menganggap bahawa medan dalam FDTD berayun sinusoid. Dalam FDTD yang dicadangkan, medan, ε, µ dan impedans permukaan untuk SIBC semuanya dianggap sebagai nombor kompleks. Kaedah FDTD yang dicadangkan boleh menghilangkan titik lemah kaedah FDTD konvensional yang disebutkan di atas.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Md. Osman GONI, Masao KODAMA, "The Finite Difference Time Domain Method for Sinusoidal Electromagnetic Fields" in IEICE TRANSACTIONS on Electronics,
vol. E85-C, no. 3, pp. 823-830, March 2002, doi: .
Abstract: The FDTD method needs Fourier analysis to obtain the fields of a single frequency. Furthermore, the frequency spectra of the fields used in the FDTD method ordinarily have wide bands, and all the fields in FDTD are treated as real numbers. Therefore, if the permittivity ε and the permeability µ of the medium depend on frequency, or if the surface impedance used for the surface impedance boundary condition (SIBC) depends on the frequency, the FDTD method becomes very complicated because of convolution integral. In the electromagnetic theory, we usually assume that the fields oscillate sinusoidally, and that the fields and ε and µ are complex numbers. The benefit of introduction of the complex numbers is very extensive. As we do in the usual electromagnetic theory, the authors assume that the fields in FDTD oscillate sinusoidally. In the proposed FDTD, the fields, ε, µ and the surface impedances for SIBC are all treated as the complex numbers. The proposed FDTD method can remove the above-mentioned weak points of the conventional FDTD method.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/e85-c_3_823/_p
Salinan
@ARTICLE{e85-c_3_823,
author={Md. Osman GONI, Masao KODAMA, },
journal={IEICE TRANSACTIONS on Electronics},
title={The Finite Difference Time Domain Method for Sinusoidal Electromagnetic Fields},
year={2002},
volume={E85-C},
number={3},
pages={823-830},
abstract={The FDTD method needs Fourier analysis to obtain the fields of a single frequency. Furthermore, the frequency spectra of the fields used in the FDTD method ordinarily have wide bands, and all the fields in FDTD are treated as real numbers. Therefore, if the permittivity ε and the permeability µ of the medium depend on frequency, or if the surface impedance used for the surface impedance boundary condition (SIBC) depends on the frequency, the FDTD method becomes very complicated because of convolution integral. In the electromagnetic theory, we usually assume that the fields oscillate sinusoidally, and that the fields and ε and µ are complex numbers. The benefit of introduction of the complex numbers is very extensive. As we do in the usual electromagnetic theory, the authors assume that the fields in FDTD oscillate sinusoidally. In the proposed FDTD, the fields, ε, µ and the surface impedances for SIBC are all treated as the complex numbers. The proposed FDTD method can remove the above-mentioned weak points of the conventional FDTD method.},
keywords={},
doi={},
ISSN={},
month={March},}
Salinan
TY - JOUR
TI - The Finite Difference Time Domain Method for Sinusoidal Electromagnetic Fields
T2 - IEICE TRANSACTIONS on Electronics
SP - 823
EP - 830
AU - Md. Osman GONI
AU - Masao KODAMA
PY - 2002
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E85-C
IS - 3
JA - IEICE TRANSACTIONS on Electronics
Y1 - March 2002
AB - The FDTD method needs Fourier analysis to obtain the fields of a single frequency. Furthermore, the frequency spectra of the fields used in the FDTD method ordinarily have wide bands, and all the fields in FDTD are treated as real numbers. Therefore, if the permittivity ε and the permeability µ of the medium depend on frequency, or if the surface impedance used for the surface impedance boundary condition (SIBC) depends on the frequency, the FDTD method becomes very complicated because of convolution integral. In the electromagnetic theory, we usually assume that the fields oscillate sinusoidally, and that the fields and ε and µ are complex numbers. The benefit of introduction of the complex numbers is very extensive. As we do in the usual electromagnetic theory, the authors assume that the fields in FDTD oscillate sinusoidally. In the proposed FDTD, the fields, ε, µ and the surface impedances for SIBC are all treated as the complex numbers. The proposed FDTD method can remove the above-mentioned weak points of the conventional FDTD method.
ER -