The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Kami telah mencipta titik kuantum Si bertindan (QD) dengan dan tanpa teras Ge yang tertanam dalam SiO2 rangkaian pada n-Si(100) dan mengkaji ciri pelepasan elektron medan mereka di bawah aplikasi pincang DC. Bagi kes tindanan Si-QD tulen dengan nombor tindanan titik yang berbeza, medan elektrik purata dalam struktur susun titik di mana arus pelepasan elektron muncul mencapai nilai minimum pada nombor tindanan 11. Ini boleh dikaitkan dengan pengoptimuman elektron pelepasan disebabkan oleh kepekatan medan elektrik yang dipertingkatkan pada lapisan atas struktur bertindan titik dan pengurangan arus suntikan elektron daripada substrat n-Si, dengan bilangan tindanan yang meningkat. Kami juga mendapati bahawa, dengan memperkenalkan teras Ge ke dalam Si-QD, medan elektrik purata untuk pelepasan elektron boleh dikurangkan di bawah daripada struktur bertindan Si-QD tulen. Keputusan ini menunjukkan bahawa medan elektrik lebih tertumpu di bahagian atas Si-QD dengan lapisan teras Ge kerana potensi telaga yang mendalam untuk lubang dalam teras Ge.
Yuto FUTAMURA
Nagoya University
Katsunori MAKIHARA
Nagoya University
Akio OHTA
Nagoya University
Mitsuhisa IKEDA
Nagoya University
Seiichi MIYAZAKI
Nagoya University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Yuto FUTAMURA, Katsunori MAKIHARA, Akio OHTA, Mitsuhisa IKEDA, Seiichi MIYAZAKI, "Characterization of Electron Field Emission from Multiple-Stacking Si-Based Quantum Dots" in IEICE TRANSACTIONS on Electronics,
vol. E102-C, no. 6, pp. 458-461, June 2019, doi: 10.1587/transele.2018FUP0007.
Abstract: We have fabricated multiple-stacked Si quantum dots (QDs) with and without Ge core embedded in a SiO2 network on n-Si(100) and studied their field electron emission characteristics under DC bias application. For the case of pure Si-QD stacks with different dot-stack numbers, the average electric field in dot-stacked structures at which electron emission current appeared reached minimum value at a stack number of 11. This can be attributed to optimization of the electron emission due to enhanced electric field concentration in the upper layers of the dot-stacked structures and reduction of the electron injection current from the n-Si substrate, with an increased stack number. We also found that, by introducing Ge core into Si-QDs, the average electric field for the electron emission can be reduced below that from pure Si-QDs-stacked structures. This result implies that the electric field is more concentrated in the upper Si-QDs with Ge core layers due to deep potential well for holes in the Ge core.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/transele.2018FUP0007/_p
Salinan
@ARTICLE{e102-c_6_458,
author={Yuto FUTAMURA, Katsunori MAKIHARA, Akio OHTA, Mitsuhisa IKEDA, Seiichi MIYAZAKI, },
journal={IEICE TRANSACTIONS on Electronics},
title={Characterization of Electron Field Emission from Multiple-Stacking Si-Based Quantum Dots},
year={2019},
volume={E102-C},
number={6},
pages={458-461},
abstract={We have fabricated multiple-stacked Si quantum dots (QDs) with and without Ge core embedded in a SiO2 network on n-Si(100) and studied their field electron emission characteristics under DC bias application. For the case of pure Si-QD stacks with different dot-stack numbers, the average electric field in dot-stacked structures at which electron emission current appeared reached minimum value at a stack number of 11. This can be attributed to optimization of the electron emission due to enhanced electric field concentration in the upper layers of the dot-stacked structures and reduction of the electron injection current from the n-Si substrate, with an increased stack number. We also found that, by introducing Ge core into Si-QDs, the average electric field for the electron emission can be reduced below that from pure Si-QDs-stacked structures. This result implies that the electric field is more concentrated in the upper Si-QDs with Ge core layers due to deep potential well for holes in the Ge core.},
keywords={},
doi={10.1587/transele.2018FUP0007},
ISSN={1745-1353},
month={June},}
Salinan
TY - JOUR
TI - Characterization of Electron Field Emission from Multiple-Stacking Si-Based Quantum Dots
T2 - IEICE TRANSACTIONS on Electronics
SP - 458
EP - 461
AU - Yuto FUTAMURA
AU - Katsunori MAKIHARA
AU - Akio OHTA
AU - Mitsuhisa IKEDA
AU - Seiichi MIYAZAKI
PY - 2019
DO - 10.1587/transele.2018FUP0007
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E102-C
IS - 6
JA - IEICE TRANSACTIONS on Electronics
Y1 - June 2019
AB - We have fabricated multiple-stacked Si quantum dots (QDs) with and without Ge core embedded in a SiO2 network on n-Si(100) and studied their field electron emission characteristics under DC bias application. For the case of pure Si-QD stacks with different dot-stack numbers, the average electric field in dot-stacked structures at which electron emission current appeared reached minimum value at a stack number of 11. This can be attributed to optimization of the electron emission due to enhanced electric field concentration in the upper layers of the dot-stacked structures and reduction of the electron injection current from the n-Si substrate, with an increased stack number. We also found that, by introducing Ge core into Si-QDs, the average electric field for the electron emission can be reduced below that from pure Si-QDs-stacked structures. This result implies that the electric field is more concentrated in the upper Si-QDs with Ge core layers due to deep potential well for holes in the Ge core.
ER -