The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Kami memperoleh formula berasaskan fizik ciri voltan semasa untuk diod terowong resonans (RTD) dengan menggunakan fungsi Voigt. Fungsi Voigt menerangkan keadaan pencampuran bagi pembesaran homogen dan tidak homogen bagi lebar tenaga puncak dalam kebarangkalian penghantaran, yang secara sensitif dicerminkan kepada rintangan pembezaan negatif tak linear bagi RTD. Formula yang diperolehi boleh digunakan untuk model SPICE RTD tanpa melakukan kamiran berangka. Kami menunjukkan kesahihan formula dengan membandingkan dengan data yang diukur untuk RTD dua halangan dan tiga halangan.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Hideaki SHIN-YA, Michihiko SUHARA, Naoya ASAOKA, Mamoru NAOI, "Implementation of Physics-Based Model for Current-Voltage Characteristics in Resonant Tunneling Diodes by Using the Voigt Function" in IEICE TRANSACTIONS on Electronics,
vol. E93-C, no. 8, pp. 1295-1301, August 2010, doi: 10.1587/transele.E93.C.1295.
Abstract: We derive physics-based formula of current-voltage characteristic for resonant tunneling diodes (RTDs) by using the Voigt function. The Voigt function describes the mixing condition of homogeneous and inhomogeneous broadenings of peak energy width in transmission probability, which is sensitively reflected to nonlinear negative differential resistance of RTDs. The obtained formula is applicable to the SPICE model of RTD without performing numerical integrals. We indicate validity of the formula by comparing to measured data for double-barrier and triple-barrier RTDs.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/transele.E93.C.1295/_p
Salinan
@ARTICLE{e93-c_8_1295,
author={Hideaki SHIN-YA, Michihiko SUHARA, Naoya ASAOKA, Mamoru NAOI, },
journal={IEICE TRANSACTIONS on Electronics},
title={Implementation of Physics-Based Model for Current-Voltage Characteristics in Resonant Tunneling Diodes by Using the Voigt Function},
year={2010},
volume={E93-C},
number={8},
pages={1295-1301},
abstract={We derive physics-based formula of current-voltage characteristic for resonant tunneling diodes (RTDs) by using the Voigt function. The Voigt function describes the mixing condition of homogeneous and inhomogeneous broadenings of peak energy width in transmission probability, which is sensitively reflected to nonlinear negative differential resistance of RTDs. The obtained formula is applicable to the SPICE model of RTD without performing numerical integrals. We indicate validity of the formula by comparing to measured data for double-barrier and triple-barrier RTDs.},
keywords={},
doi={10.1587/transele.E93.C.1295},
ISSN={1745-1353},
month={August},}
Salinan
TY - JOUR
TI - Implementation of Physics-Based Model for Current-Voltage Characteristics in Resonant Tunneling Diodes by Using the Voigt Function
T2 - IEICE TRANSACTIONS on Electronics
SP - 1295
EP - 1301
AU - Hideaki SHIN-YA
AU - Michihiko SUHARA
AU - Naoya ASAOKA
AU - Mamoru NAOI
PY - 2010
DO - 10.1587/transele.E93.C.1295
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E93-C
IS - 8
JA - IEICE TRANSACTIONS on Electronics
Y1 - August 2010
AB - We derive physics-based formula of current-voltage characteristic for resonant tunneling diodes (RTDs) by using the Voigt function. The Voigt function describes the mixing condition of homogeneous and inhomogeneous broadenings of peak energy width in transmission probability, which is sensitively reflected to nonlinear negative differential resistance of RTDs. The obtained formula is applicable to the SPICE model of RTD without performing numerical integrals. We indicate validity of the formula by comparing to measured data for double-barrier and triple-barrier RTDs.
ER -