The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Penskalaan Voltan Dinamik (DVS) ialah teknik reka bentuk berkuasa rendah yang terkenal, yang melaraskan kelajuan jam dan voltan bekalan secara dinamik untuk mengurangkan penggunaan tenaga sistem masa nyata. Kajian terdahulu mempertimbangkan pengagihan kebarangkalian beban kerja tugas untuk membantu DVS dalam penjadualan tugas. Kajian ini menggunakan maklumat kebarangkalian untuk penjadualan kekerapan intra-tugas tetapi tidak cukup meneroka peluang untuk beban kerja sistem untuk menjimatkan lebih banyak tenaga. Kertas kerja ini membentangkan algoritma DVS baru untuk tugas masa nyata berkala berdasarkan analisis beban kerja sistem untuk mengurangkan penggunaan kuasanya. Algoritma ini memanfaatkan sepenuhnya ciri pengedaran kebarangkalian beban kerja sistem di bawah penjadualan dipacu keutamaan seperti Earliest-Deadline-First (EDF). Keputusan eksperimen menunjukkan bahawa algoritma yang dicadangkan mengurangkan masa melahu pemproses dan menghabiskan lebih banyak masa sibuk dalam kelajuan kuasa yang lebih rendah. Pengukuran menunjukkan bahawa berbanding dengan algoritma DVS relatif, algoritma ini menjimatkan tenaga sekurang-kurangnya 30% sambil memberikan jaminan prestasi statistik.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Zhe ZHANG, Xin CHEN, De-jun QIAN, Chen HU, "Dynamic Voltage Scaling for Real-Time Systems with System Workload Analysis" in IEICE TRANSACTIONS on Electronics,
vol. E93-C, no. 3, pp. 399-406, March 2010, doi: 10.1587/transele.E93.C.399.
Abstract: Dynamic Voltage Scaling (DVS) is a well-known low-power design technique, which adjusts the clock speed and supply voltage dynamically to reduce the energy consumption of real-time systems. Previous studies considered the probabilistic distribution of tasks' workloads to assist DVS in task scheduling. These studies use probability information for intra-task frequency scheduling but do not sufficiently explore the opportunities for the system workload to save more energy. This paper presents a novel DVS algorithm for periodic real-time tasks based on the analysis of the system workload to reduce its power consumption. This algorithm takes full advantage of the probabilistic distribution characteristics of the system workload under priority-driven scheduling such as Earliest-Deadline-First (EDF). Experimental results show that the proposed algorithm reduces processor idle time and spends more busy time in lower-power speeds. The measurement indicates that compared to the relative DVS algorithms, this algorithm saves energy by at least 30% while delivering statistical performance guarantees.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/transele.E93.C.399/_p
Salinan
@ARTICLE{e93-c_3_399,
author={Zhe ZHANG, Xin CHEN, De-jun QIAN, Chen HU, },
journal={IEICE TRANSACTIONS on Electronics},
title={Dynamic Voltage Scaling for Real-Time Systems with System Workload Analysis},
year={2010},
volume={E93-C},
number={3},
pages={399-406},
abstract={Dynamic Voltage Scaling (DVS) is a well-known low-power design technique, which adjusts the clock speed and supply voltage dynamically to reduce the energy consumption of real-time systems. Previous studies considered the probabilistic distribution of tasks' workloads to assist DVS in task scheduling. These studies use probability information for intra-task frequency scheduling but do not sufficiently explore the opportunities for the system workload to save more energy. This paper presents a novel DVS algorithm for periodic real-time tasks based on the analysis of the system workload to reduce its power consumption. This algorithm takes full advantage of the probabilistic distribution characteristics of the system workload under priority-driven scheduling such as Earliest-Deadline-First (EDF). Experimental results show that the proposed algorithm reduces processor idle time and spends more busy time in lower-power speeds. The measurement indicates that compared to the relative DVS algorithms, this algorithm saves energy by at least 30% while delivering statistical performance guarantees.},
keywords={},
doi={10.1587/transele.E93.C.399},
ISSN={1745-1353},
month={March},}
Salinan
TY - JOUR
TI - Dynamic Voltage Scaling for Real-Time Systems with System Workload Analysis
T2 - IEICE TRANSACTIONS on Electronics
SP - 399
EP - 406
AU - Zhe ZHANG
AU - Xin CHEN
AU - De-jun QIAN
AU - Chen HU
PY - 2010
DO - 10.1587/transele.E93.C.399
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E93-C
IS - 3
JA - IEICE TRANSACTIONS on Electronics
Y1 - March 2010
AB - Dynamic Voltage Scaling (DVS) is a well-known low-power design technique, which adjusts the clock speed and supply voltage dynamically to reduce the energy consumption of real-time systems. Previous studies considered the probabilistic distribution of tasks' workloads to assist DVS in task scheduling. These studies use probability information for intra-task frequency scheduling but do not sufficiently explore the opportunities for the system workload to save more energy. This paper presents a novel DVS algorithm for periodic real-time tasks based on the analysis of the system workload to reduce its power consumption. This algorithm takes full advantage of the probabilistic distribution characteristics of the system workload under priority-driven scheduling such as Earliest-Deadline-First (EDF). Experimental results show that the proposed algorithm reduces processor idle time and spends more busy time in lower-power speeds. The measurement indicates that compared to the relative DVS algorithms, this algorithm saves energy by at least 30% while delivering statistical performance guarantees.
ER -