The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Kertas kerja ini membentangkan skim FDTD yang stabil tanpa syarat dan selaras yang berdasarkan kaedah domain masa perbezaan terhingga tersirat arah selang seli (ADI-FDTD) untuk pemodelan tepat objek pengalir elektrik sempurna (PEC). Skim yang dicadangkan dirumuskan dalam rangka kerja tatatanda matriks-vektor bagi teknik penyepaduan terhingga (FIT), yang membolehkan lanjutan penyelesaian perbezaan terhingga yang sistematik dan konsisten bagi persamaan Maxwell pada dwi grid. Sebagai pilihan kaedah konformal penumpuan tertib kedua, kami menggunakan sel terisi separa (PFC) dan skema konformal stabil seragam (USC) untuk kaedah ADI-FDTD. Kestabilan tanpa syarat dan kadar penumpuan skim ADI-FDTD (CADI-FDTD) konformal yang dicadangkan disahkan melalui contoh berangka masalah pandu gelombang.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Kazuhiro FUJITA, Yoichi KOCHIBE, Takefumi NAMIKI, "Numerical Investigation of Conformal ADI-FDTD Schemes with Second-Order Convergence" in IEICE TRANSACTIONS on Electronics,
vol. E93-C, no. 1, pp. 52-59, January 2010, doi: 10.1587/transele.E93.C.52.
Abstract: This paper presents unconditionally stable and conformal FDTD schemes which are based on the alternating-direction implicit finite difference time domain (ADI-FDTD) method for accurate modeling of perfectly electric conducting (PEC) objects. The proposed schemes are formulated within the framework of the matrix-vector notation of the finite integration technique (FIT), which allows a systematic and consistent extension of finite difference solution of Maxwell's equations on dual grids. As possible choices of second-order convergent conformal method, we apply the partially filled cell (PFC) and the uniformly stable conformal (USC) schemes for the ADI-FDTD method. The unconditional stability and the rates of convergence of the proposed conformal ADI-FDTD (CADI-FDTD) schemes are verified by means of numerical examples of waveguide problems.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/transele.E93.C.52/_p
Salinan
@ARTICLE{e93-c_1_52,
author={Kazuhiro FUJITA, Yoichi KOCHIBE, Takefumi NAMIKI, },
journal={IEICE TRANSACTIONS on Electronics},
title={Numerical Investigation of Conformal ADI-FDTD Schemes with Second-Order Convergence},
year={2010},
volume={E93-C},
number={1},
pages={52-59},
abstract={This paper presents unconditionally stable and conformal FDTD schemes which are based on the alternating-direction implicit finite difference time domain (ADI-FDTD) method for accurate modeling of perfectly electric conducting (PEC) objects. The proposed schemes are formulated within the framework of the matrix-vector notation of the finite integration technique (FIT), which allows a systematic and consistent extension of finite difference solution of Maxwell's equations on dual grids. As possible choices of second-order convergent conformal method, we apply the partially filled cell (PFC) and the uniformly stable conformal (USC) schemes for the ADI-FDTD method. The unconditional stability and the rates of convergence of the proposed conformal ADI-FDTD (CADI-FDTD) schemes are verified by means of numerical examples of waveguide problems.},
keywords={},
doi={10.1587/transele.E93.C.52},
ISSN={1745-1353},
month={January},}
Salinan
TY - JOUR
TI - Numerical Investigation of Conformal ADI-FDTD Schemes with Second-Order Convergence
T2 - IEICE TRANSACTIONS on Electronics
SP - 52
EP - 59
AU - Kazuhiro FUJITA
AU - Yoichi KOCHIBE
AU - Takefumi NAMIKI
PY - 2010
DO - 10.1587/transele.E93.C.52
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E93-C
IS - 1
JA - IEICE TRANSACTIONS on Electronics
Y1 - January 2010
AB - This paper presents unconditionally stable and conformal FDTD schemes which are based on the alternating-direction implicit finite difference time domain (ADI-FDTD) method for accurate modeling of perfectly electric conducting (PEC) objects. The proposed schemes are formulated within the framework of the matrix-vector notation of the finite integration technique (FIT), which allows a systematic and consistent extension of finite difference solution of Maxwell's equations on dual grids. As possible choices of second-order convergent conformal method, we apply the partially filled cell (PFC) and the uniformly stable conformal (USC) schemes for the ADI-FDTD method. The unconditional stability and the rates of convergence of the proposed conformal ADI-FDTD (CADI-FDTD) schemes are verified by means of numerical examples of waveguide problems.
ER -