The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Dalam makalah ini kami menunjukkan beberapa pandangan baru pada teorem sisihan besar dari sudut pandangan kaedah spektrum maklumat (IS), yang pertama kali dieksploitasi dalam teori maklumat, dan juga menunjukkan formula asas baru untuk fungsi kadar sisihan besar secara umum, yang dinyatakan sebagai sepasang fungsi kadar IS bawah dan atas. Khususnya, kami berminat untuk mewujudkan fungsi kadar sisihan besar am yang boleh diterbitkan sebagai transformasi Fenchel-Legendre bagi fungsi penjanaan terkumpul. Matlamat akhir adalah untuk menunjukkan, dalam keadaan sederhana, syarat yang perlu dan mencukupi untuk fungsi kadar IS boleh diterbitkan sebagai transformasi Fenchel-Legendre bagi fungsi penjanaan terkumpul, iaitu, menjadi fungsi kadar jenis Gartner-Ellis.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Te-Sun HAN, "Large Deviation Theorems Revisited: Information-Spectrum Approach" in IEICE TRANSACTIONS on Fundamentals,
vol. E91-A, no. 10, pp. 2704-2719, October 2008, doi: 10.1093/ietfec/e91-a.10.2704.
Abstract: In this paper we show some new look at large deviation theorems from the viewpoint of the information-spectrum (IS) methods, which has been first exploited in information theory, and also demonstrate a new basic formula for the large deviation rate function in general, which is expressed as a pair of the lower and upper IS rate functions. In particular, we are interested in establishing the general large deviation rate functions that are derivable as the Fenchel-Legendre transform of the cumulant generating function. The final goal is to show, under some mild condition, a necessary and sufficient condition for the IS rate function to be derivable as the Fenchel-Legendre transform of the cumulant generating function, i.e., to be a rate function of Gartner-Ellis type.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1093/ietfec/e91-a.10.2704/_p
Salinan
@ARTICLE{e91-a_10_2704,
author={Te-Sun HAN, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Large Deviation Theorems Revisited: Information-Spectrum Approach},
year={2008},
volume={E91-A},
number={10},
pages={2704-2719},
abstract={In this paper we show some new look at large deviation theorems from the viewpoint of the information-spectrum (IS) methods, which has been first exploited in information theory, and also demonstrate a new basic formula for the large deviation rate function in general, which is expressed as a pair of the lower and upper IS rate functions. In particular, we are interested in establishing the general large deviation rate functions that are derivable as the Fenchel-Legendre transform of the cumulant generating function. The final goal is to show, under some mild condition, a necessary and sufficient condition for the IS rate function to be derivable as the Fenchel-Legendre transform of the cumulant generating function, i.e., to be a rate function of Gartner-Ellis type.},
keywords={},
doi={10.1093/ietfec/e91-a.10.2704},
ISSN={1745-1337},
month={October},}
Salinan
TY - JOUR
TI - Large Deviation Theorems Revisited: Information-Spectrum Approach
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2704
EP - 2719
AU - Te-Sun HAN
PY - 2008
DO - 10.1093/ietfec/e91-a.10.2704
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E91-A
IS - 10
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - October 2008
AB - In this paper we show some new look at large deviation theorems from the viewpoint of the information-spectrum (IS) methods, which has been first exploited in information theory, and also demonstrate a new basic formula for the large deviation rate function in general, which is expressed as a pair of the lower and upper IS rate functions. In particular, we are interested in establishing the general large deviation rate functions that are derivable as the Fenchel-Legendre transform of the cumulant generating function. The final goal is to show, under some mild condition, a necessary and sufficient condition for the IS rate function to be derivable as the Fenchel-Legendre transform of the cumulant generating function, i.e., to be a rate function of Gartner-Ellis type.
ER -