The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Baru-baru ini, peranti boleh konfigurasi semula digunakan secara meluas dalam bidang pengeluaran jumlah kecil dan pengeluaran percubaan. Ia juga dijangka akan digunakan dalam bidang kritikal misi seperti pembangunan ruang, kerana kemas kini sistem dan pembaikan pseudo boleh dicapai dari jauh dengan mengkonfigurasi semula. Walau bagaimanapun, dalam kes peranti boleh dikonfigurasikan semula konvensional, memori konfigurasi terganggu disebabkan oleh sinaran dan zarah alfa mengkonfigurasi semula peranti tanpa diduga, mengakibatkan kegagalan sistem yang membawa maut. Oleh itu, peranti boleh konfigurasi semula dengan toleransi kesalahan tinggi terhadap gangguan konfigurasi diperlukan. Dalam kertas kerja ini, kami mencadangkan seni bina peranti boleh konfigurasi semula tahan kerosakan yang secara autonomi membaiki gangguan konfigurasi dengan sendirinya tanpa mengganggu operasi sistem. Peranti ini terdiri daripada susunan 2D "Sel Pembaikan Autonomi" yang setiap satunya membaiki gangguannya secara autonomi. Seni bina mempunyai skalabiliti dalam toleransi kesalahan; Sel Pembaikan Autonomi yang lebih halus memberikan toleransi kesalahan yang lebih tinggi. Untuk menentukan seni bina, kami menganalisis empat teknik pembaikan autonomi sel secara eksperimen. Kemudian, dua teknik pembaikan autonomi, pemultipleksan mudah (SM) dan pemultipleksan memori (MM), digunakan; yang pertama kepada logik boleh atur cara dan yang kedua kepada sumber penghalaan sel-ke-sel. Melalui penilaian, kami menunjukkan bahawa peranti yang dicadangkan mencapai purata jangka hayat lebih daripada 10 tahun terhadap gangguan konfigurasi walaupun dalam keadaan yang teruk seperti orbit satelit.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Kentaro NAKAHARA, Shin'ichi KOUYAMA, Tomonori IZUMI, Hiroyuki OCHI, Yukihiro NAKAMURA, "Autonomous Repair Fault Tolerant Dynamic Reconfigurable Device" in IEICE TRANSACTIONS on Fundamentals,
vol. E91-A, no. 12, pp. 3612-3621, December 2008, doi: 10.1093/ietfec/e91-a.12.3612.
Abstract: Recently, reconfigurable devices are widely used in the fields of small amount production and trial production. They are also expected to be utilized in such mission-critical fields as space development, because system update and pseudo-repair can be achieved remotely by reconfiguring. However, in the case of conventional reconfigurable devices, configuration memory upsets caused by radiation and alpha particles reconfigure the device unpredictably, resulting in fatal system failures. Therefore, a reconfigurable device with high fault-tolerance against configuration upsets is required. In this paper, we propose an architecture of a fault-tolerant reconfigurable device that autonomously repairs configuration upsets by itself without interrupting system operations. The device consists of a 2D array of "Autonomous-Repair Cells" each of which repairs its upsets autonomously. The architecture has a scalability in fault tolerance; a finer-grained Autonomous-Repair Cell provides higher fault-tolerance. To determine the architecture, we analyze four autonomous repair techniques of the cell experimentally. Then, two autonomous repair techniques, simple multiplexing (S.M.) and memory multiplexing (M.M.), are applied; the former to programmable logics and the latter to cell-to-cell routing resources. Through evaluation, we show that proposed device achieves more than 10 years average lifetime against configuration upsets even in a severe situation such as a satellite orbit.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1093/ietfec/e91-a.12.3612/_p
Salinan
@ARTICLE{e91-a_12_3612,
author={Kentaro NAKAHARA, Shin'ichi KOUYAMA, Tomonori IZUMI, Hiroyuki OCHI, Yukihiro NAKAMURA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Autonomous Repair Fault Tolerant Dynamic Reconfigurable Device},
year={2008},
volume={E91-A},
number={12},
pages={3612-3621},
abstract={Recently, reconfigurable devices are widely used in the fields of small amount production and trial production. They are also expected to be utilized in such mission-critical fields as space development, because system update and pseudo-repair can be achieved remotely by reconfiguring. However, in the case of conventional reconfigurable devices, configuration memory upsets caused by radiation and alpha particles reconfigure the device unpredictably, resulting in fatal system failures. Therefore, a reconfigurable device with high fault-tolerance against configuration upsets is required. In this paper, we propose an architecture of a fault-tolerant reconfigurable device that autonomously repairs configuration upsets by itself without interrupting system operations. The device consists of a 2D array of "Autonomous-Repair Cells" each of which repairs its upsets autonomously. The architecture has a scalability in fault tolerance; a finer-grained Autonomous-Repair Cell provides higher fault-tolerance. To determine the architecture, we analyze four autonomous repair techniques of the cell experimentally. Then, two autonomous repair techniques, simple multiplexing (S.M.) and memory multiplexing (M.M.), are applied; the former to programmable logics and the latter to cell-to-cell routing resources. Through evaluation, we show that proposed device achieves more than 10 years average lifetime against configuration upsets even in a severe situation such as a satellite orbit.},
keywords={},
doi={10.1093/ietfec/e91-a.12.3612},
ISSN={1745-1337},
month={December},}
Salinan
TY - JOUR
TI - Autonomous Repair Fault Tolerant Dynamic Reconfigurable Device
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 3612
EP - 3621
AU - Kentaro NAKAHARA
AU - Shin'ichi KOUYAMA
AU - Tomonori IZUMI
AU - Hiroyuki OCHI
AU - Yukihiro NAKAMURA
PY - 2008
DO - 10.1093/ietfec/e91-a.12.3612
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E91-A
IS - 12
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - December 2008
AB - Recently, reconfigurable devices are widely used in the fields of small amount production and trial production. They are also expected to be utilized in such mission-critical fields as space development, because system update and pseudo-repair can be achieved remotely by reconfiguring. However, in the case of conventional reconfigurable devices, configuration memory upsets caused by radiation and alpha particles reconfigure the device unpredictably, resulting in fatal system failures. Therefore, a reconfigurable device with high fault-tolerance against configuration upsets is required. In this paper, we propose an architecture of a fault-tolerant reconfigurable device that autonomously repairs configuration upsets by itself without interrupting system operations. The device consists of a 2D array of "Autonomous-Repair Cells" each of which repairs its upsets autonomously. The architecture has a scalability in fault tolerance; a finer-grained Autonomous-Repair Cell provides higher fault-tolerance. To determine the architecture, we analyze four autonomous repair techniques of the cell experimentally. Then, two autonomous repair techniques, simple multiplexing (S.M.) and memory multiplexing (M.M.), are applied; the former to programmable logics and the latter to cell-to-cell routing resources. Through evaluation, we show that proposed device achieves more than 10 years average lifetime against configuration upsets even in a severe situation such as a satellite orbit.
ER -