The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Kertas ini mencadangkan penyelesaian bentuk tertutup untuk L2-pengurangan sensitiviti penapis digital ruang keadaan tertib kedua. Mengehadkan diri kami kepada kes tertib kedua penapis digital ruang keadaan, kami boleh menyatakannya L2-sensitiviti oleh gabungan linear mudah fungsi eksponen dan merumuskan L2-masalah pengecilan sensitiviti oleh persamaan polinomial mudah. Akibatnya, L2-masalah pengecilan kepekaan boleh ditukar kepada masalah untuk mencari penyelesaian kepada persamaan polinomial darjah empat bagi pekali malar, yang boleh diselesaikan secara algebra dalam bentuk tertutup tanpa pengiraan lelaran.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Shunsuke YAMAKI, Masahide ABE, Masayuki KAWAMATA, "A Closed Form Solution to L2-Sensitivity Minimization of Second-Order State-Space Digital Filters" in IEICE TRANSACTIONS on Fundamentals,
vol. E91-A, no. 5, pp. 1268-1273, May 2008, doi: 10.1093/ietfec/e91-a.5.1268.
Abstract: This paper proposes a closed form solution to L2-sensitivity minimization of second-order state-space digital filters. Restricting ourselves to the second-order case of state-space digital filters, we can express the L2-sensitivity by a simple linear combination of exponential functions and formulate the L2-sensitivity minimization problem by a simple polynomial equation. As a result, the L2-sensitivity minimization problem can be converted into a problem to find the solution to a fourth-degree polynomial equation of constant coefficients, which can be algebraically solved in closed form without iterative calculations.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1093/ietfec/e91-a.5.1268/_p
Salinan
@ARTICLE{e91-a_5_1268,
author={Shunsuke YAMAKI, Masahide ABE, Masayuki KAWAMATA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={A Closed Form Solution to L2-Sensitivity Minimization of Second-Order State-Space Digital Filters},
year={2008},
volume={E91-A},
number={5},
pages={1268-1273},
abstract={This paper proposes a closed form solution to L2-sensitivity minimization of second-order state-space digital filters. Restricting ourselves to the second-order case of state-space digital filters, we can express the L2-sensitivity by a simple linear combination of exponential functions and formulate the L2-sensitivity minimization problem by a simple polynomial equation. As a result, the L2-sensitivity minimization problem can be converted into a problem to find the solution to a fourth-degree polynomial equation of constant coefficients, which can be algebraically solved in closed form without iterative calculations.},
keywords={},
doi={10.1093/ietfec/e91-a.5.1268},
ISSN={1745-1337},
month={May},}
Salinan
TY - JOUR
TI - A Closed Form Solution to L2-Sensitivity Minimization of Second-Order State-Space Digital Filters
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1268
EP - 1273
AU - Shunsuke YAMAKI
AU - Masahide ABE
AU - Masayuki KAWAMATA
PY - 2008
DO - 10.1093/ietfec/e91-a.5.1268
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E91-A
IS - 5
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - May 2008
AB - This paper proposes a closed form solution to L2-sensitivity minimization of second-order state-space digital filters. Restricting ourselves to the second-order case of state-space digital filters, we can express the L2-sensitivity by a simple linear combination of exponential functions and formulate the L2-sensitivity minimization problem by a simple polynomial equation. As a result, the L2-sensitivity minimization problem can be converted into a problem to find the solution to a fourth-degree polynomial equation of constant coefficients, which can be algebraically solved in closed form without iterative calculations.
ER -