The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
H∞ kawalan optimum adalah salah satu pencapaian paling berjaya dalam teori kawalan pasca moden. Di dalam H∞ kawalan optimum, kami mereka bentuk pengawal yang meminimumkan H∞ norma sistem tertentu. Walaupun algoritma untuk menyelesaikan masalah telah dilaporkan, ia memberi tumpuan kepada sistem berangka (sistem tanpa sebarang parameter yang tidak diketahui) dan, tidak boleh digunakan untuk sistem parametrik (sistem dengan parameter yang tidak diketahui). Memandangkan sistem parametrik, kertas ini membentangkan algoritma untuk mengira yang optimum H∞ norma sistem yang dicapai oleh pengawal maklum balas keluaran. Yang optimum H∞ norma dinyatakan sebagai
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Takuya KITAMOTO, Tetsu YAMAGUCHI, "The Optimal H∞ Norm of a Parametric System Achievable by an Output Feedback Controller" in IEICE TRANSACTIONS on Fundamentals,
vol. E91-A, no. 7, pp. 1713-1724, July 2008, doi: 10.1093/ietfec/e91-a.7.1713.
Abstract: H∞ optimal control is one of the most successful achievements in the post modern control theory. In the H∞ optimal control, we design a controller that minimizes the H∞ norm of a given system. Although the algorithms to solve the problem have already been reported, they focus on numerical systems (systems without any unknown parameters) and, can not be applied for parametric systems (systems with unknown parameters). Given a parametric system, this paper presents an algorithm to compute the optimal H∞ norm of the system achieved by an output feedback controller. The optimal H∞ norm is expressed as
URL: https://global.ieice.org/en_transactions/fundamentals/10.1093/ietfec/e91-a.7.1713/_p
Salinan
@ARTICLE{e91-a_7_1713,
author={Takuya KITAMOTO, Tetsu YAMAGUCHI, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={The Optimal H∞ Norm of a Parametric System Achievable by an Output Feedback Controller},
year={2008},
volume={E91-A},
number={7},
pages={1713-1724},
abstract={H∞ optimal control is one of the most successful achievements in the post modern control theory. In the H∞ optimal control, we design a controller that minimizes the H∞ norm of a given system. Although the algorithms to solve the problem have already been reported, they focus on numerical systems (systems without any unknown parameters) and, can not be applied for parametric systems (systems with unknown parameters). Given a parametric system, this paper presents an algorithm to compute the optimal H∞ norm of the system achieved by an output feedback controller. The optimal H∞ norm is expressed as
keywords={},
doi={10.1093/ietfec/e91-a.7.1713},
ISSN={1745-1337},
month={July},}
Salinan
TY - JOUR
TI - The Optimal H∞ Norm of a Parametric System Achievable by an Output Feedback Controller
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1713
EP - 1724
AU - Takuya KITAMOTO
AU - Tetsu YAMAGUCHI
PY - 2008
DO - 10.1093/ietfec/e91-a.7.1713
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E91-A
IS - 7
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - July 2008
AB - H∞ optimal control is one of the most successful achievements in the post modern control theory. In the H∞ optimal control, we design a controller that minimizes the H∞ norm of a given system. Although the algorithms to solve the problem have already been reported, they focus on numerical systems (systems without any unknown parameters) and, can not be applied for parametric systems (systems with unknown parameters). Given a parametric system, this paper presents an algorithm to compute the optimal H∞ norm of the system achieved by an output feedback controller. The optimal H∞ norm is expressed as
ER -