The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Sistem berbilang input berbilang output (MIMO) maksimum-SNR (max-SNR) menggunakan penggabung nisbah maksimum (MRC) di bahagian penerima dan pemancar nisbah maksimum (MRT) di bahagian pemancar. Prestasinya sangat bergantung pada ciri saluran MIMO, yang berbeza-beza mengikut kedua-dua bilangan antena dan pengedarannya antara sisi pemancar dan penerima. Dengan menggunakan penguraian taburan Wishart yang dipesan dalam kes Rayleigh yang tidak berkorelasi, kami memperoleh ungkapan bentuk tertutup bagi fungsi ketumpatan kemungkinan nilai eigen terbesar (PDF). Hasil akhir menghasilkan bentuk ungkapan PDF di mana polinomial didarab dengan eksponen; perlu digariskan bahawa, walaupun bentuk ini telah diperhatikan sebelum ini untuk pasangan antena yang diberikan, sehingga kini tiada bentuk tertutup yang ditulis secara rasmi tersedia dalam kesusasteraan untuk pasangan sewenang-wenangnya. Kemudian, ungkapan baharu ini membenarkan seseorang dengan cepat dan mudah mendapatkan PDF nilai eigen terbesar yang terkenal dan menggunakannya untuk menentukan kebarangkalian ralat binari (BEP) bagi SNR maks.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Jonathan LETESSIER, Baptiste VRIGNEAU, Philippe ROSTAING, Gilles BUREL, "New Closed-Form of the Largest Eigenvalue PDF for Max-SNR MIMO System Performances" in IEICE TRANSACTIONS on Fundamentals,
vol. E91-A, no. 7, pp. 1791-1796, July 2008, doi: 10.1093/ietfec/e91-a.7.1791.
Abstract: Multiple-input multiple-output (MIMO) maximum-SNR (max-SNR) system employs the maximum ratio combiner (MRC) at the receiver side and the maximum ratio transmitter (MRT) at the transmitter side. Its performances highly depend on MIMO channel characteristics, which vary according to both the number of antennas and their distribution between the transmitter and receiver sides. By using the decomposition of the ordered Wishart distribution in the uncorrelated Rayleigh case, we derived a closed-form expression of the largest eigenvalue probability density function (PDF). The final result yields to an expression form of the PDF where polynomials are multiplied by exponentials; it is worth underlining that, though this form had been previously observed for given couples of antennas, to date no formally-written closed-form was available in the literature for an arbitrary couple. Then, this new expression permits one to quickly and easily get the well known largest eigenvalue PDF and use it to determine the binary error probability (BEP) of the max-SNR.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1093/ietfec/e91-a.7.1791/_p
Salinan
@ARTICLE{e91-a_7_1791,
author={Jonathan LETESSIER, Baptiste VRIGNEAU, Philippe ROSTAING, Gilles BUREL, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={New Closed-Form of the Largest Eigenvalue PDF for Max-SNR MIMO System Performances},
year={2008},
volume={E91-A},
number={7},
pages={1791-1796},
abstract={Multiple-input multiple-output (MIMO) maximum-SNR (max-SNR) system employs the maximum ratio combiner (MRC) at the receiver side and the maximum ratio transmitter (MRT) at the transmitter side. Its performances highly depend on MIMO channel characteristics, which vary according to both the number of antennas and their distribution between the transmitter and receiver sides. By using the decomposition of the ordered Wishart distribution in the uncorrelated Rayleigh case, we derived a closed-form expression of the largest eigenvalue probability density function (PDF). The final result yields to an expression form of the PDF where polynomials are multiplied by exponentials; it is worth underlining that, though this form had been previously observed for given couples of antennas, to date no formally-written closed-form was available in the literature for an arbitrary couple. Then, this new expression permits one to quickly and easily get the well known largest eigenvalue PDF and use it to determine the binary error probability (BEP) of the max-SNR.},
keywords={},
doi={10.1093/ietfec/e91-a.7.1791},
ISSN={1745-1337},
month={July},}
Salinan
TY - JOUR
TI - New Closed-Form of the Largest Eigenvalue PDF for Max-SNR MIMO System Performances
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1791
EP - 1796
AU - Jonathan LETESSIER
AU - Baptiste VRIGNEAU
AU - Philippe ROSTAING
AU - Gilles BUREL
PY - 2008
DO - 10.1093/ietfec/e91-a.7.1791
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E91-A
IS - 7
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - July 2008
AB - Multiple-input multiple-output (MIMO) maximum-SNR (max-SNR) system employs the maximum ratio combiner (MRC) at the receiver side and the maximum ratio transmitter (MRT) at the transmitter side. Its performances highly depend on MIMO channel characteristics, which vary according to both the number of antennas and their distribution between the transmitter and receiver sides. By using the decomposition of the ordered Wishart distribution in the uncorrelated Rayleigh case, we derived a closed-form expression of the largest eigenvalue probability density function (PDF). The final result yields to an expression form of the PDF where polynomials are multiplied by exponentials; it is worth underlining that, though this form had been previously observed for given couples of antennas, to date no formally-written closed-form was available in the literature for an arbitrary couple. Then, this new expression permits one to quickly and easily get the well known largest eigenvalue PDF and use it to determine the binary error probability (BEP) of the max-SNR.
ER -