The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Kami mengkaji penyegerakan sistem dinamik yang disebabkan oleh hingar berwarna luaran tambahan biasa. Khususnya, kami menganggap kes khas bahawa hingar input luaran dijana oleh persamaan pembezaan urutan kedua linear yang dipaksa oleh hingar putih Gaussian. Jadi spektrum frekuensi bunyi ini tidak tetap. Dalam kes dinamik bebas hingar huru-hara, kami mendapati contoh penyegerakan dipertingkatkan apabila puncak hingar input hampir dengan puncak dinamik bebas hingar dalam ruang frekuensi. Sekiranya dinamik bebas hingar tidak huru-hara, kami tidak memerhatikan fenomena ini.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Shin-itiro GOTO, Kazuyuki YOSHIMURA, Peter DAVIS, "Conditional Lyapunov Exponent Depending on Spectrum of Input Noise in Common-Noise-Induced Synchronization" in IEICE TRANSACTIONS on Fundamentals,
vol. E91-A, no. 9, pp. 2535-2539, September 2008, doi: 10.1093/ietfec/e91-a.9.2535.
Abstract: We study the synchronization of dynamical systems induced by common additional external colored noise. In particular, we consider the special case that the external input noise is generated by a linear second-order differential equation forced by Gaussian white noise. So the frequency spectrum of this noise is not constant. In the case that noise-free dynamics is chaotic, we find examples where the synchronization is enhanced when the peak of the input noise is close to the peak of the noise-free dynamics in frequency space. In the case that noise-free dynamics is non-chaotic, we do not observe this phenomenon.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1093/ietfec/e91-a.9.2535/_p
Salinan
@ARTICLE{e91-a_9_2535,
author={Shin-itiro GOTO, Kazuyuki YOSHIMURA, Peter DAVIS, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Conditional Lyapunov Exponent Depending on Spectrum of Input Noise in Common-Noise-Induced Synchronization},
year={2008},
volume={E91-A},
number={9},
pages={2535-2539},
abstract={We study the synchronization of dynamical systems induced by common additional external colored noise. In particular, we consider the special case that the external input noise is generated by a linear second-order differential equation forced by Gaussian white noise. So the frequency spectrum of this noise is not constant. In the case that noise-free dynamics is chaotic, we find examples where the synchronization is enhanced when the peak of the input noise is close to the peak of the noise-free dynamics in frequency space. In the case that noise-free dynamics is non-chaotic, we do not observe this phenomenon.},
keywords={},
doi={10.1093/ietfec/e91-a.9.2535},
ISSN={1745-1337},
month={September},}
Salinan
TY - JOUR
TI - Conditional Lyapunov Exponent Depending on Spectrum of Input Noise in Common-Noise-Induced Synchronization
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2535
EP - 2539
AU - Shin-itiro GOTO
AU - Kazuyuki YOSHIMURA
AU - Peter DAVIS
PY - 2008
DO - 10.1093/ietfec/e91-a.9.2535
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E91-A
IS - 9
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - September 2008
AB - We study the synchronization of dynamical systems induced by common additional external colored noise. In particular, we consider the special case that the external input noise is generated by a linear second-order differential equation forced by Gaussian white noise. So the frequency spectrum of this noise is not constant. In the case that noise-free dynamics is chaotic, we find examples where the synchronization is enhanced when the peak of the input noise is close to the peak of the noise-free dynamics in frequency space. In the case that noise-free dynamics is non-chaotic, we do not observe this phenomenon.
ER -