The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Trellises menggigit ekor kod blok linear dan bukan linear ditangani. Kami memperhalusi pendekatan teori-maklumat bagi karya terdahulu mengenai perwakilan teralis konvensional, dan menunjukkan bahawa idea yang sama dibawa ke terali yang menggigit ekor. Kami membentangkan sempadan bawah pada profil kerumitan negeri dan cawangan bagi perwakilan ini. Batasan ini dinyatakan dari segi maklumat bersama antara bahagian kod yang berbeza, dan ia memperkenalkan tanggapan superstate dan superbranch. Untuk kod blok linear, had kami membayangkan bahawa jumlah bilangan superstate, dan masing-masing superbranches, trellis menggigit ekor kod tidak boleh lebih kecil daripada jumlah bilangan negeri, dan masing-masing cawangan, bagi trellis konvensional minimum yang sepadan, walaupun. jumlah bilangan negeri dan cawangan terali penggigit ekor biasanya lebih kecil daripada terali konvensional. Kami juga membangunkan beberapa sempadan bawah yang dipertingkatkan pada kerumitan keadaan terali penggigit ekor untuk dua kelas kod: kod Reed-Muller tertib pertama dan kod kitaran. Kami menunjukkan bahawa superstate dan superbranch menentukan kerumitan penyahkodan Viterbi bagi trellis yang menggigit ekor. Oleh itu, kerumitan pengiraan penyahkodan kemungkinan maksimum bagi kod blok linear pada trellis penggigit ekor, menggunakan algoritma Viterbi, adalah tidak lebih kecil daripada trellis konvensional kod tersebut. Walau bagaimanapun, trellises menggigit ekor bermanfaat untuk teknik penyahkodan suboptimum dan berulang.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Ilan REUVEN, Yair BE'ERY, "Tail-Biting Trellises of Block Codes: Trellis Complexity and Viterbi Decoding Complexity" in IEICE TRANSACTIONS on Fundamentals,
vol. E82-A, no. 10, pp. 2043-2051, October 1999, doi: .
Abstract: Tail-biting trellises of linear and nonlinear block codes are addressed. We refine the information-theoretic approach of a previous work on conventional trellis representation, and show that the same ideas carry over to tail-biting trellises. We present lower bounds on the state and branch complexity profiles of these representations. These bounds are expressed in terms of mutual information between different portions of the code, and they introduce the notions of superstates and superbranches. For linear block codes, our bounds imply that the total number of superstates, and respectively superbranches, of a tail-biting trellis of the code cannot be smaller than the total number of states, and respectively branches, of the corresponding minimal conventional trellis, though the total number of states and branches of a tail-biting trellis is usually smaller than that of the conventional trellis. We also develop some improved lower bounds on the state complexity of a tail-biting trellis for two classes of codes: the first-order Reed-Muller codes and cyclic codes. We show that the superstates and superbranches determine the Viterbi decoding complexity of a tail-biting trellis. Thus, the computational complexity of the maximum-likelihood decoding of linear block codes on a tail-biting trellis, using the Viterbi algorithm, is not smaller than that of the conventional trellis of the code. However, tail-biting trellises are beneficial for suboptimal and iterative decoding techniques.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e82-a_10_2043/_p
Salinan
@ARTICLE{e82-a_10_2043,
author={Ilan REUVEN, Yair BE'ERY, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Tail-Biting Trellises of Block Codes: Trellis Complexity and Viterbi Decoding Complexity},
year={1999},
volume={E82-A},
number={10},
pages={2043-2051},
abstract={Tail-biting trellises of linear and nonlinear block codes are addressed. We refine the information-theoretic approach of a previous work on conventional trellis representation, and show that the same ideas carry over to tail-biting trellises. We present lower bounds on the state and branch complexity profiles of these representations. These bounds are expressed in terms of mutual information between different portions of the code, and they introduce the notions of superstates and superbranches. For linear block codes, our bounds imply that the total number of superstates, and respectively superbranches, of a tail-biting trellis of the code cannot be smaller than the total number of states, and respectively branches, of the corresponding minimal conventional trellis, though the total number of states and branches of a tail-biting trellis is usually smaller than that of the conventional trellis. We also develop some improved lower bounds on the state complexity of a tail-biting trellis for two classes of codes: the first-order Reed-Muller codes and cyclic codes. We show that the superstates and superbranches determine the Viterbi decoding complexity of a tail-biting trellis. Thus, the computational complexity of the maximum-likelihood decoding of linear block codes on a tail-biting trellis, using the Viterbi algorithm, is not smaller than that of the conventional trellis of the code. However, tail-biting trellises are beneficial for suboptimal and iterative decoding techniques.},
keywords={},
doi={},
ISSN={},
month={October},}
Salinan
TY - JOUR
TI - Tail-Biting Trellises of Block Codes: Trellis Complexity and Viterbi Decoding Complexity
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2043
EP - 2051
AU - Ilan REUVEN
AU - Yair BE'ERY
PY - 1999
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E82-A
IS - 10
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - October 1999
AB - Tail-biting trellises of linear and nonlinear block codes are addressed. We refine the information-theoretic approach of a previous work on conventional trellis representation, and show that the same ideas carry over to tail-biting trellises. We present lower bounds on the state and branch complexity profiles of these representations. These bounds are expressed in terms of mutual information between different portions of the code, and they introduce the notions of superstates and superbranches. For linear block codes, our bounds imply that the total number of superstates, and respectively superbranches, of a tail-biting trellis of the code cannot be smaller than the total number of states, and respectively branches, of the corresponding minimal conventional trellis, though the total number of states and branches of a tail-biting trellis is usually smaller than that of the conventional trellis. We also develop some improved lower bounds on the state complexity of a tail-biting trellis for two classes of codes: the first-order Reed-Muller codes and cyclic codes. We show that the superstates and superbranches determine the Viterbi decoding complexity of a tail-biting trellis. Thus, the computational complexity of the maximum-likelihood decoding of linear block codes on a tail-biting trellis, using the Viterbi algorithm, is not smaller than that of the conventional trellis of the code. However, tail-biting trellises are beneficial for suboptimal and iterative decoding techniques.
ER -