The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Kertas kerja ini membangunkan algoritma berdasarkan Pendekatan Modular untuk menyelesaikan masalah pengoptimuman diskret yang boleh dipisahkan secara tunggal (Masalah Knapsack Tak Linear). Pendekatan Modular menggunakan teknik fathoming dan integrasi berulang kali. Fathoming mengurangkan ruang keputusan pembolehubah. Penyepaduan mengurangkan bilangan pembolehubah dalam masalah dengan menggabungkan beberapa pembolehubah menjadi satu pembolehubah. Percubaan pengiraan untuk masalah ujian "keras" dengan sehingga 1000 pembolehubah disediakan. Setiap pembolehubah mempunyai sehingga 1000 nilai integer.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Yuji NAKAGAWA, Akinori IWASAKI, "Modular Approach for Solving Nonlinear Knapsack Problems" in IEICE TRANSACTIONS on Fundamentals,
vol. E82-A, no. 9, pp. 1860-1864, September 1999, doi: .
Abstract: This paper develops an algorithm based on the Modular Approach to solve singly constrained separable discrete optimization problems (Nonlinear Knapsack Problems). The Modular Approach uses fathoming and integration techniques repeatedly. The fathoming reduces the decision space of variables. The integration reduces the number of variables in the problem by combining several variables into one variable. Computational experiments for "hard" test problems with up to 1000 variables are provided. Each variable has up to 1000 integer values.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e82-a_9_1860/_p
Salinan
@ARTICLE{e82-a_9_1860,
author={Yuji NAKAGAWA, Akinori IWASAKI, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Modular Approach for Solving Nonlinear Knapsack Problems},
year={1999},
volume={E82-A},
number={9},
pages={1860-1864},
abstract={This paper develops an algorithm based on the Modular Approach to solve singly constrained separable discrete optimization problems (Nonlinear Knapsack Problems). The Modular Approach uses fathoming and integration techniques repeatedly. The fathoming reduces the decision space of variables. The integration reduces the number of variables in the problem by combining several variables into one variable. Computational experiments for "hard" test problems with up to 1000 variables are provided. Each variable has up to 1000 integer values.},
keywords={},
doi={},
ISSN={},
month={September},}
Salinan
TY - JOUR
TI - Modular Approach for Solving Nonlinear Knapsack Problems
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1860
EP - 1864
AU - Yuji NAKAGAWA
AU - Akinori IWASAKI
PY - 1999
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E82-A
IS - 9
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - September 1999
AB - This paper develops an algorithm based on the Modular Approach to solve singly constrained separable discrete optimization problems (Nonlinear Knapsack Problems). The Modular Approach uses fathoming and integration techniques repeatedly. The fathoming reduces the decision space of variables. The integration reduces the number of variables in the problem by combining several variables into one variable. Computational experiments for "hard" test problems with up to 1000 variables are provided. Each variable has up to 1000 integer values.
ER -