The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Kami menunjukkan cara menggunakan algoritma penyahkodan Feng-Rao dan terikat Feng-Rao untuk pembinaan Ω kod geometri algebra kepada L-pembinaan. Kemudian kami memberi contoh di mana L-pembinaan memberikan kod linear yang lebih baik daripada pembinaan Ω dalam julat parameter tertentu pada lengkung yang sama.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Ryutaroh MATSUMOTO, Shinji MIURA, "On the Feng-Rao Bound for the L-construction of Algebraic Geometry Codes" in IEICE TRANSACTIONS on Fundamentals,
vol. E83-A, no. 5, pp. 923-926, May 2000, doi: .
Abstract: We show how to apply the Feng-Rao decoding algorithm and the Feng-Rao bound for the Ω-construction of algebraic geometry codes to the L-construction. Then we give examples in which the L-construction gives better linear codes than the Ω-construction in certain range of parameters on the same curve.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e83-a_5_923/_p
Salinan
@ARTICLE{e83-a_5_923,
author={Ryutaroh MATSUMOTO, Shinji MIURA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={On the Feng-Rao Bound for the L-construction of Algebraic Geometry Codes},
year={2000},
volume={E83-A},
number={5},
pages={923-926},
abstract={We show how to apply the Feng-Rao decoding algorithm and the Feng-Rao bound for the Ω-construction of algebraic geometry codes to the L-construction. Then we give examples in which the L-construction gives better linear codes than the Ω-construction in certain range of parameters on the same curve.},
keywords={},
doi={},
ISSN={},
month={May},}
Salinan
TY - JOUR
TI - On the Feng-Rao Bound for the L-construction of Algebraic Geometry Codes
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 923
EP - 926
AU - Ryutaroh MATSUMOTO
AU - Shinji MIURA
PY - 2000
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E83-A
IS - 5
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - May 2000
AB - We show how to apply the Feng-Rao decoding algorithm and the Feng-Rao bound for the Ω-construction of algebraic geometry codes to the L-construction. Then we give examples in which the L-construction gives better linear codes than the Ω-construction in certain range of parameters on the same curve.
ER -