The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Kami mempersembahkan sejenis novel litar sepadu dan kebakaran (IFC) dengan dua input berkala: input rangsangan nadi-kereta api dan input asas. Kami menjelaskan bahawa keadaan sistem dikuantisasi oleh input rangsangan nadi-kereta api. Kemudian dinamik sistem diterangkan oleh a kembalikan peta dengan keadaan terkuantisasi (Qmap). Dengan menukar bentuk input asas, pelbagai Qmaps boleh diperolehi. Qmap mempamerkan keadaan kewujudan bersama pelbagai orbit berkala super stabil, dan IFC mengeluarkan salah satu daripada kereta api nadi berkala super stabil yang sepadan bergantung pada keadaan awal. Untuk kes biasa, kami menjelaskan bilangan kereta api nadi berkala sedia ada secara teori untuk frekuensi rangsangan. Membina litar ujian mudah, fenomena tipikal boleh disahkan di makmal.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Yoshinobu KAWASAKI, Hiroyuki TORIKAI, Toshimichi SAITO, "Quantized Dynamics from an Integrate-and-Fire Circuit with Pulse-Train Stimulation" in IEICE TRANSACTIONS on Fundamentals,
vol. E84-A, no. 10, pp. 2547-2552, October 2001, doi: .
Abstract: We present a novel kind of integrate-and-fire circuit (IFC) with two periodic inputs: a pulse-train stimulation input and a base input. We clarify that the system state is quantized by the pulse-train stimulation input. Then the system dynamics is described by a return map with quantized state (Qmap). By changing the shape of the base input, various Qmaps can be obtained. The Qmap exhibits co-existence state of various super-stable periodic orbits, and the IFC outputs one of corresponding super-stable periodic pulse-trains depending on the initial state. For a typical case, we clarify the number of co-existing periodic pulse-trains theoretically for the stimulation frequencies. Constructing a simple test circuit, typical phenomena can be verified in the laboratory.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e84-a_10_2547/_p
Salinan
@ARTICLE{e84-a_10_2547,
author={Yoshinobu KAWASAKI, Hiroyuki TORIKAI, Toshimichi SAITO, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Quantized Dynamics from an Integrate-and-Fire Circuit with Pulse-Train Stimulation},
year={2001},
volume={E84-A},
number={10},
pages={2547-2552},
abstract={We present a novel kind of integrate-and-fire circuit (IFC) with two periodic inputs: a pulse-train stimulation input and a base input. We clarify that the system state is quantized by the pulse-train stimulation input. Then the system dynamics is described by a return map with quantized state (Qmap). By changing the shape of the base input, various Qmaps can be obtained. The Qmap exhibits co-existence state of various super-stable periodic orbits, and the IFC outputs one of corresponding super-stable periodic pulse-trains depending on the initial state. For a typical case, we clarify the number of co-existing periodic pulse-trains theoretically for the stimulation frequencies. Constructing a simple test circuit, typical phenomena can be verified in the laboratory.},
keywords={},
doi={},
ISSN={},
month={October},}
Salinan
TY - JOUR
TI - Quantized Dynamics from an Integrate-and-Fire Circuit with Pulse-Train Stimulation
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2547
EP - 2552
AU - Yoshinobu KAWASAKI
AU - Hiroyuki TORIKAI
AU - Toshimichi SAITO
PY - 2001
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E84-A
IS - 10
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - October 2001
AB - We present a novel kind of integrate-and-fire circuit (IFC) with two periodic inputs: a pulse-train stimulation input and a base input. We clarify that the system state is quantized by the pulse-train stimulation input. Then the system dynamics is described by a return map with quantized state (Qmap). By changing the shape of the base input, various Qmaps can be obtained. The Qmap exhibits co-existence state of various super-stable periodic orbits, and the IFC outputs one of corresponding super-stable periodic pulse-trains depending on the initial state. For a typical case, we clarify the number of co-existing periodic pulse-trains theoretically for the stimulation frequencies. Constructing a simple test circuit, typical phenomena can be verified in the laboratory.
ER -