The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Pengekodan aritmetik yang dipertingkatkan yang menyediakan pengekod dengan ketepatan pengiraan terhingga untuk jujukan sumber ke atas abjad yang boleh dikira dipersembahkan. Pengekodan aritmetik konvensional secara teorinya mempunyai ketepatan tak terhingga untuk pembolehubah sebenar. Walau bagaimanapun, sebarang algoritma yang dilaksanakan pada komputer mempunyai ketepatan terhingga. Ini menunjukkan bahawa kod aritmetik konvensional hanya boleh mengekod jujukan pada abjad terhingga. Pengekodan aritmetik yang dipertingkatkan yang dibentangkan di sini mempunyai kerumitan pengiraan yang berkadar secara kasar dengan panjang jujukan sumber untuk sumber tertentu.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Mikihiko NISHIARA, Hiroyoshi MORITA, "Arithmetic Coding for Countable Alphabet Sources with Finite Precision" in IEICE TRANSACTIONS on Fundamentals,
vol. E84-A, no. 10, pp. 2576-2582, October 2001, doi: .
Abstract: An improved arithmetic coding which provides an encoder with finite calculation precision for source sequences over a countable alphabet is presented. Conventional arithmetic coding theoretically has infinite precision for real variables. However any algorithm implemented on a computer has finite precision. This implies that conventional arithmetic codes can only encode sequences over a finite alphabet. The improved arithmetic coding presented here has a computational complexity which is roughly proportional to the length of the source sequence for a given source.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e84-a_10_2576/_p
Salinan
@ARTICLE{e84-a_10_2576,
author={Mikihiko NISHIARA, Hiroyoshi MORITA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Arithmetic Coding for Countable Alphabet Sources with Finite Precision},
year={2001},
volume={E84-A},
number={10},
pages={2576-2582},
abstract={An improved arithmetic coding which provides an encoder with finite calculation precision for source sequences over a countable alphabet is presented. Conventional arithmetic coding theoretically has infinite precision for real variables. However any algorithm implemented on a computer has finite precision. This implies that conventional arithmetic codes can only encode sequences over a finite alphabet. The improved arithmetic coding presented here has a computational complexity which is roughly proportional to the length of the source sequence for a given source.},
keywords={},
doi={},
ISSN={},
month={October},}
Salinan
TY - JOUR
TI - Arithmetic Coding for Countable Alphabet Sources with Finite Precision
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2576
EP - 2582
AU - Mikihiko NISHIARA
AU - Hiroyoshi MORITA
PY - 2001
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E84-A
IS - 10
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - October 2001
AB - An improved arithmetic coding which provides an encoder with finite calculation precision for source sequences over a countable alphabet is presented. Conventional arithmetic coding theoretically has infinite precision for real variables. However any algorithm implemented on a computer has finite precision. This implies that conventional arithmetic codes can only encode sequences over a finite alphabet. The improved arithmetic coding presented here has a computational complexity which is roughly proportional to the length of the source sequence for a given source.
ER -