The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Salah satu kelemahan data yang dimampatkan ialah kelemahannya, iaitu, walaupun satu bit yang rosak dalam data yang dimampatkan boleh memusnahkan data yang dimampatkan sepenuhnya. Oleh itu, Pengekodan Aritmetik Panjang Variable-to-Fixed, atau VFAC, dengan keupayaan pengesanan ralat dibincangkan. Walau bagaimanapun, kaedah pemulihan ralat yang boleh dilaksanakan untuk data termampat tidak pernah dicadangkan. Kertas kerja ini mencadangkan Pemulihan Ralat Burst Pengekodan Aritmetik Pembolehubah-ke-Tetap, atau BERVFAC, serta Ralat Mengesan Pengekodan Aritmetik Pembolehubah-ke-Tetap, atau EDVFAC. Kedua-dua skim VFAC mencapai pengekodan VF dengan memasukkan keadaan dalaman penyahmampat ke dalam data termampat. Keadaan dalaman terdiri daripada lebar dan mengimbangi sub-selang yang sepadan dengan simbol nyahmampat dan juga digunakan untuk pengesanan ralat. Operasi konvolusi digunakan untuk pengekodan dan penyahkodan untuk menyebarkan ralat dan meningkatkan keupayaan kawalan ralat. EDVFAC dan BERVFAC yang dicadangkan dinilai dengan analisis teori dan simulasi komputer. Keputusan simulasi menunjukkan bahawa lebih daripada 99.99% ralat boleh dikesan oleh EDVFAC. Untuk BERVFAC, lebih 99.95% daripada l-ralat pecah boleh dibetulkan untuk l
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Hongyuan CHEN, Masato KITAKAMI, Eiji FUJIWARA, "Burst Error Recovery for VF Arithmetic Coding" in IEICE TRANSACTIONS on Fundamentals,
vol. E84-A, no. 4, pp. 1050-1063, April 2001, doi: .
Abstract: One of the disadvantages of compressed data is their vulnerability, that is, even a single corrupted bit in compressed data may destroy the decompressed data completely. Therefore, Variable-to-Fixed length Arithmetic Coding, or VFAC, with error detecting capability is discussed. However, implementable error recovery method for compressed data has never been proposed. This paper proposes Burst Error Recovery Variable-to-Fixed length Arithmetic Coding, or BERVFAC, as well as Error Detecting Variable-to-Fixed length Arithmetic Coding, or EDVFAC. Both VFAC schemes achieve VF coding by inserting the internal states of the decompressor into compressed data. The internal states consist of width and offset of the sub-interval corresponding to the decompressed symbol and are also used for error detection. Convolutional operations are applied to encoding and decoding in order to propagate errors and improve error control capability. The proposed EDVFAC and BERVFAC are evaluated by theoretical analysis and computer simulations. The simulation results show that more than 99.99% of errors can be detected by EDVFAC. For BERVFAC, over 99.95% of l-burst errors can be corrected for l
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e84-a_4_1050/_p
Salinan
@ARTICLE{e84-a_4_1050,
author={Hongyuan CHEN, Masato KITAKAMI, Eiji FUJIWARA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Burst Error Recovery for VF Arithmetic Coding},
year={2001},
volume={E84-A},
number={4},
pages={1050-1063},
abstract={One of the disadvantages of compressed data is their vulnerability, that is, even a single corrupted bit in compressed data may destroy the decompressed data completely. Therefore, Variable-to-Fixed length Arithmetic Coding, or VFAC, with error detecting capability is discussed. However, implementable error recovery method for compressed data has never been proposed. This paper proposes Burst Error Recovery Variable-to-Fixed length Arithmetic Coding, or BERVFAC, as well as Error Detecting Variable-to-Fixed length Arithmetic Coding, or EDVFAC. Both VFAC schemes achieve VF coding by inserting the internal states of the decompressor into compressed data. The internal states consist of width and offset of the sub-interval corresponding to the decompressed symbol and are also used for error detection. Convolutional operations are applied to encoding and decoding in order to propagate errors and improve error control capability. The proposed EDVFAC and BERVFAC are evaluated by theoretical analysis and computer simulations. The simulation results show that more than 99.99% of errors can be detected by EDVFAC. For BERVFAC, over 99.95% of l-burst errors can be corrected for l
keywords={},
doi={},
ISSN={},
month={April},}
Salinan
TY - JOUR
TI - Burst Error Recovery for VF Arithmetic Coding
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1050
EP - 1063
AU - Hongyuan CHEN
AU - Masato KITAKAMI
AU - Eiji FUJIWARA
PY - 2001
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E84-A
IS - 4
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - April 2001
AB - One of the disadvantages of compressed data is their vulnerability, that is, even a single corrupted bit in compressed data may destroy the decompressed data completely. Therefore, Variable-to-Fixed length Arithmetic Coding, or VFAC, with error detecting capability is discussed. However, implementable error recovery method for compressed data has never been proposed. This paper proposes Burst Error Recovery Variable-to-Fixed length Arithmetic Coding, or BERVFAC, as well as Error Detecting Variable-to-Fixed length Arithmetic Coding, or EDVFAC. Both VFAC schemes achieve VF coding by inserting the internal states of the decompressor into compressed data. The internal states consist of width and offset of the sub-interval corresponding to the decompressed symbol and are also used for error detection. Convolutional operations are applied to encoding and decoding in order to propagate errors and improve error control capability. The proposed EDVFAC and BERVFAC are evaluated by theoretical analysis and computer simulations. The simulation results show that more than 99.99% of errors can be detected by EDVFAC. For BERVFAC, over 99.95% of l-burst errors can be corrected for l
ER -