The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Dalam laporan ini, kami mencadangkan pengekodan imej lossy dan lossless bersepadu, yang mungkin dilaksanakan pada satu seni bina, berdasarkan gabungan transformasi wavelet lossless (LWT) dan ramalan berbilang saluran lossy-lossless (LLMP). LWT digunakan untuk membahagikan isyarat input kepada subband frekuensi sebagai penguraian jalur oktaf, manakala LLMP direka bentuk sebagai bank penapis dua dimensi yang tidak boleh dipisahkan termasuk saiz langkah pengkuantitian dan penyahkodan tempatan untuk meningkatkan prestasi pengekodan dalam pengekodan tanpa kehilangan dan pengekodan lossy . Pekali penapisnya ditentukan untuk meminimumkan jumlah kadar bit untuk pengekodan tanpa kerugian, dan saiz langkah pengkuantitian optimum digunakan untuk memaksimumkan keuntungan pengekodan lossy. Penyahkodan tempatan digunakan untuk mengelakkan kesan ralat kuantisasi. Keputusan eksperimen mengesahkan keberkesanan kaedah yang dicadangkan kami.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Somchart CHOKCHAITAM, Masahiro IWAHASHI, Pavol ZAVARSKY, Noriyoshi KAMBAYASHI, "Integrated Lossy and Lossless Image Coding Based on Lossless Wavelet Transform and Lossy-Lossless Multi-Channel Prediction" in IEICE TRANSACTIONS on Fundamentals,
vol. E84-A, no. 5, pp. 1326-1338, May 2001, doi: .
Abstract: In this report, we propose an integrated lossy and lossless image coding, which is possible to be implemented on one architecture, based on combination of lossless wavelet transform (LWT) and lossy-lossless multi-channel prediction (LLMP). The LWT is applied to divide input signals into frequency subbands as octave-band decomposition, whereas the LLMP is designed as a non-separable two-dimensional filter bank including quantization step size and local decoding to enhance coding performance in both lossless coding and lossy coding. Its filter coefficients are determined to minimize total bit rate for lossless coding, and the optimum quantization step size is applied to maximize lossy coding gain. The local decoding is applied to avoid quantization error effect. The experimental results confirm effectiveness of our proposed method.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e84-a_5_1326/_p
Salinan
@ARTICLE{e84-a_5_1326,
author={Somchart CHOKCHAITAM, Masahiro IWAHASHI, Pavol ZAVARSKY, Noriyoshi KAMBAYASHI, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Integrated Lossy and Lossless Image Coding Based on Lossless Wavelet Transform and Lossy-Lossless Multi-Channel Prediction},
year={2001},
volume={E84-A},
number={5},
pages={1326-1338},
abstract={In this report, we propose an integrated lossy and lossless image coding, which is possible to be implemented on one architecture, based on combination of lossless wavelet transform (LWT) and lossy-lossless multi-channel prediction (LLMP). The LWT is applied to divide input signals into frequency subbands as octave-band decomposition, whereas the LLMP is designed as a non-separable two-dimensional filter bank including quantization step size and local decoding to enhance coding performance in both lossless coding and lossy coding. Its filter coefficients are determined to minimize total bit rate for lossless coding, and the optimum quantization step size is applied to maximize lossy coding gain. The local decoding is applied to avoid quantization error effect. The experimental results confirm effectiveness of our proposed method.},
keywords={},
doi={},
ISSN={},
month={May},}
Salinan
TY - JOUR
TI - Integrated Lossy and Lossless Image Coding Based on Lossless Wavelet Transform and Lossy-Lossless Multi-Channel Prediction
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1326
EP - 1338
AU - Somchart CHOKCHAITAM
AU - Masahiro IWAHASHI
AU - Pavol ZAVARSKY
AU - Noriyoshi KAMBAYASHI
PY - 2001
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E84-A
IS - 5
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - May 2001
AB - In this report, we propose an integrated lossy and lossless image coding, which is possible to be implemented on one architecture, based on combination of lossless wavelet transform (LWT) and lossy-lossless multi-channel prediction (LLMP). The LWT is applied to divide input signals into frequency subbands as octave-band decomposition, whereas the LLMP is designed as a non-separable two-dimensional filter bank including quantization step size and local decoding to enhance coding performance in both lossless coding and lossy coding. Its filter coefficients are determined to minimize total bit rate for lossless coding, and the optimum quantization step size is applied to maximize lossy coding gain. The local decoding is applied to avoid quantization error effect. The experimental results confirm effectiveness of our proposed method.
ER -