The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Kertas kerja ini menerangkan litar bangunan bahagian hadapan jalur 2.4-GHz--pencampur penukaran ke bawah (DCM), prascaler pembahagi dua modulus dengan 4/5, suis antena hantar/terima (SW), penguat kuasa ( PA), dan penguat hingar rendah (LNA). Ia direka menggunakan proses CMOS pukal 0.18 µm piawai dengan penggunaan arus yang lebih rendah daripada litar bipolar, dan boleh beroperasi pada voltan bekalan rendah 1.8 V. Pad berperisai jerat digunakan untuk bunyi litar penerima yang lebih rendah. Pad yang dilindungi oleh logam menjadi retak apabila ia terikat, oleh itu kawasan aktif silisid digunakan sebagai perisai dan bukannya logam untuk mengelakkan keretakan ini. Perisai berjaring mencapai kapasitor pad parasit yang lebih rendah tanpa perintang parasit, dan juga bertindak sebagai kawasan aktif tiruan. DCM yang dicadangkan mempunyai ciri IP3 yang tinggi. DCM mempunyai konfigurasi FET cascode dan kuasa LO disuntik ke dalam FET bawah. Dengan mengekalkan voltan sumber saliran transistor atas besar, ketaklinieran transkonduktans sumber saliran dikurangkan dan herotan rendah DCM direalisasikan. Ia mencapai input yang lebih tinggi dirujuk IP3 dengan keuntungan penukaran yang lebih tinggi untuk penggunaan semasa yang hampir sama bagi pengadun seimbang tunggal konvensional. Output yang dirujuk IP3 adalah lebih tinggi 5.0 dB daripada pengadun seimbang tunggal. Prascaler dwi-modulus yang dicadangkan menggunakan teknik pembezaan sepenuhnya untuk mencapai operasi yang stabil. Untuk mengelakkan ralat, litar pembezaan sepenuhnya memberikan margin ayunan voltan logik. Selain itu, teknik pembezaan juga mengurangkan kesan hingar daripada talian voltan bekalan kerana penolakan isyarat mod biasa. Kekerapan operasi maksimum ialah 3.0 GHz, dan penggunaan kuasa flip-flop yang dinormalkan oleh kekerapan operasi maksimum ialah 180 µW/GHz.
Hiroshi KOMURASAKI
Kazuya YAMAMOTO
Hideyuki WAKADA
Tetsuya HEIMA
Akihiko FURUKAWA
Hisayasu SATO
Takahiro MIKI
Naoyuki KATO
Akira HYOGO
Keitaro SEKINE
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Hiroshi KOMURASAKI, Kazuya YAMAMOTO, Hideyuki WAKADA, Tetsuya HEIMA, Akihiko FURUKAWA, Hisayasu SATO, Takahiro MIKI, Naoyuki KATO, Akira HYOGO, Keitaro SEKINE, "2.4-GHz-Band CMOS RF Front-End Building Blocks at a 1.8-V Supply" in IEICE TRANSACTIONS on Fundamentals,
vol. E85-A, no. 2, pp. 300-308, February 2002, doi: .
Abstract: This paper describes 2.4-GHz-band front-end building circuits--a down conversion mixer (DCM), a dual-modulus divide-by-4/5 prescaler, a transmit/receive antenna switch (SW), a power amplifier (PA), and a low noise amplifier (LNA). They are fabricated using a standard bulk 0.18 µm CMOS process with a lower current consumption than bipolar circuits, and can operate at the low supply voltage of 1.8 V. Meshed-shielded pads are adopted for lower receiver circuit noise. Pads shielded by metals become cracked when they are bounded, therefore silicided active areas are used as shields instead of metals to avoid these cracks. The meshed shields achieve lower parasitic pad capacitors without parasitic resistors, and also act as dummy active areas. The proposed DCM has a high IP3 characteristic. The DCM has a cascode FET configuration and LO power is injected into the lower FET. By keeping the drain-source voltage of the upper transistor large, the nonlinearity of the drain-source transconductance is reduced and a low distortion DCM is realized. It achieves a higher input referred IP3 with a higher conversion gain for almost the same current consumption of a conventional single-balanced mixer. The output referred IP3 is higher 5.0 dB than the single-balanced mixer. The proposed dual-modulus prescaler employs a fully-differential technique to achieve stable operation. In order to avoid errors, the fully-differential circuit gives the logic voltage swing margins. In addition, the differential technique also reduces the noise effect from the supply voltage line because of the common-mode signal rejection. The maximum operating frequency is 3.0 GHz, and the one flip-flop power consumption normalized by the maximum operating frequency is 180 µW/GHz.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e85-a_2_300/_p
Salinan
@ARTICLE{e85-a_2_300,
author={Hiroshi KOMURASAKI, Kazuya YAMAMOTO, Hideyuki WAKADA, Tetsuya HEIMA, Akihiko FURUKAWA, Hisayasu SATO, Takahiro MIKI, Naoyuki KATO, Akira HYOGO, Keitaro SEKINE, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={2.4-GHz-Band CMOS RF Front-End Building Blocks at a 1.8-V Supply},
year={2002},
volume={E85-A},
number={2},
pages={300-308},
abstract={This paper describes 2.4-GHz-band front-end building circuits--a down conversion mixer (DCM), a dual-modulus divide-by-4/5 prescaler, a transmit/receive antenna switch (SW), a power amplifier (PA), and a low noise amplifier (LNA). They are fabricated using a standard bulk 0.18 µm CMOS process with a lower current consumption than bipolar circuits, and can operate at the low supply voltage of 1.8 V. Meshed-shielded pads are adopted for lower receiver circuit noise. Pads shielded by metals become cracked when they are bounded, therefore silicided active areas are used as shields instead of metals to avoid these cracks. The meshed shields achieve lower parasitic pad capacitors without parasitic resistors, and also act as dummy active areas. The proposed DCM has a high IP3 characteristic. The DCM has a cascode FET configuration and LO power is injected into the lower FET. By keeping the drain-source voltage of the upper transistor large, the nonlinearity of the drain-source transconductance is reduced and a low distortion DCM is realized. It achieves a higher input referred IP3 with a higher conversion gain for almost the same current consumption of a conventional single-balanced mixer. The output referred IP3 is higher 5.0 dB than the single-balanced mixer. The proposed dual-modulus prescaler employs a fully-differential technique to achieve stable operation. In order to avoid errors, the fully-differential circuit gives the logic voltage swing margins. In addition, the differential technique also reduces the noise effect from the supply voltage line because of the common-mode signal rejection. The maximum operating frequency is 3.0 GHz, and the one flip-flop power consumption normalized by the maximum operating frequency is 180 µW/GHz.},
keywords={},
doi={},
ISSN={},
month={February},}
Salinan
TY - JOUR
TI - 2.4-GHz-Band CMOS RF Front-End Building Blocks at a 1.8-V Supply
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 300
EP - 308
AU - Hiroshi KOMURASAKI
AU - Kazuya YAMAMOTO
AU - Hideyuki WAKADA
AU - Tetsuya HEIMA
AU - Akihiko FURUKAWA
AU - Hisayasu SATO
AU - Takahiro MIKI
AU - Naoyuki KATO
AU - Akira HYOGO
AU - Keitaro SEKINE
PY - 2002
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E85-A
IS - 2
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - February 2002
AB - This paper describes 2.4-GHz-band front-end building circuits--a down conversion mixer (DCM), a dual-modulus divide-by-4/5 prescaler, a transmit/receive antenna switch (SW), a power amplifier (PA), and a low noise amplifier (LNA). They are fabricated using a standard bulk 0.18 µm CMOS process with a lower current consumption than bipolar circuits, and can operate at the low supply voltage of 1.8 V. Meshed-shielded pads are adopted for lower receiver circuit noise. Pads shielded by metals become cracked when they are bounded, therefore silicided active areas are used as shields instead of metals to avoid these cracks. The meshed shields achieve lower parasitic pad capacitors without parasitic resistors, and also act as dummy active areas. The proposed DCM has a high IP3 characteristic. The DCM has a cascode FET configuration and LO power is injected into the lower FET. By keeping the drain-source voltage of the upper transistor large, the nonlinearity of the drain-source transconductance is reduced and a low distortion DCM is realized. It achieves a higher input referred IP3 with a higher conversion gain for almost the same current consumption of a conventional single-balanced mixer. The output referred IP3 is higher 5.0 dB than the single-balanced mixer. The proposed dual-modulus prescaler employs a fully-differential technique to achieve stable operation. In order to avoid errors, the fully-differential circuit gives the logic voltage swing margins. In addition, the differential technique also reduces the noise effect from the supply voltage line because of the common-mode signal rejection. The maximum operating frequency is 3.0 GHz, and the one flip-flop power consumption normalized by the maximum operating frequency is 180 µW/GHz.
ER -