The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Dalam kertas ini, kami mempertimbangkan masalah reka bentuk rangkaian dengan struktur hab-dan-jejari. Kami mencadangkan teknik kelonggaran untuk masalah di mana lokasi nod hab diberikan dan memutuskan peruntukan nod bukan hab kepada salah satu nod hab. Kami menyelaraskan fungsi objektif kuadratik bukan cembung bagi masalah asal, memperkenalkan masalah pengangkutan Hitchcock yang ditakrifkan untuk setiap pasangan nod bukan hab. Kami menyediakan dua masalah kelonggaran linear, satu berdasarkan masalah pengangkutan Hitchcock dan satu lagi mengenai masalah pengangkutan dua Hitchcock. Kami menunjukkan ketat sempadan bawah yang diperolehi oleh perumusan kami melalui pengalaman pengiraan.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Hiro-o SAITO, Shiro MATUURA, Tomomi MATSUI, "A Linear Relaxation for Hub Network Design Problems" in IEICE TRANSACTIONS on Fundamentals,
vol. E85-A, no. 5, pp. 1000-1005, May 2002, doi: .
Abstract: In this paper, we consider a network design problem with hub-and-spoke structure. We propose a relaxation technique for the problem where the location of hub nodes is given and decides the allocation of non-hub nodes to one of the hub nodes. We linearize the non-convex quadratic objective function of the original problem, introducing Hitchcock transportation problems defined for each pair of non-hub nodes. We provide two linear relaxation problems, one based on the Hitchcock transportation problems and the other on the dual Hitchcock transportation problems. We show the tightness of the lower bounds obtained by our formulations by computational experiences.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e85-a_5_1000/_p
Salinan
@ARTICLE{e85-a_5_1000,
author={Hiro-o SAITO, Shiro MATUURA, Tomomi MATSUI, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={A Linear Relaxation for Hub Network Design Problems},
year={2002},
volume={E85-A},
number={5},
pages={1000-1005},
abstract={In this paper, we consider a network design problem with hub-and-spoke structure. We propose a relaxation technique for the problem where the location of hub nodes is given and decides the allocation of non-hub nodes to one of the hub nodes. We linearize the non-convex quadratic objective function of the original problem, introducing Hitchcock transportation problems defined for each pair of non-hub nodes. We provide two linear relaxation problems, one based on the Hitchcock transportation problems and the other on the dual Hitchcock transportation problems. We show the tightness of the lower bounds obtained by our formulations by computational experiences.},
keywords={},
doi={},
ISSN={},
month={May},}
Salinan
TY - JOUR
TI - A Linear Relaxation for Hub Network Design Problems
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1000
EP - 1005
AU - Hiro-o SAITO
AU - Shiro MATUURA
AU - Tomomi MATSUI
PY - 2002
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E85-A
IS - 5
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - May 2002
AB - In this paper, we consider a network design problem with hub-and-spoke structure. We propose a relaxation technique for the problem where the location of hub nodes is given and decides the allocation of non-hub nodes to one of the hub nodes. We linearize the non-convex quadratic objective function of the original problem, introducing Hitchcock transportation problems defined for each pair of non-hub nodes. We provide two linear relaxation problems, one based on the Hitchcock transportation problems and the other on the dual Hitchcock transportation problems. We show the tightness of the lower bounds obtained by our formulations by computational experiences.
ER -