The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Kod boleh dibaiki setempat (LRC) dengan lokaliti r dan ketersediaan t ialah kelas kod yang boleh memulihkan data daripada pemadaman dengan mengakses yang lain t kumpulan pembaikan terputus, yang paling banyak mengandungi setiap kumpulan r simbol kod lain. Surat ini akan menyiasat pembinaan LRC yang diperoleh daripada kod kitaran dan segi empat umum. Di satu pihak, dua kelas LRC kitaran dengan lokaliti tertentu m-1 dan ketersediaan em dicadangkan melalui fungsi surih. LRC kami mempunyai lokaliti, ketersediaan, jarak minimum dan kadar kod yang sama, tetapi mempunyai panjang pendek dan dimensi rendah. Sebaliknya, LRC dengan $(2,(p+1)flloor rac{s}{2} floor)$ dibentangkan berdasarkan set mata dalam PG(k, q) yang membentuk segi empat umum dengan susunan (s, p). Untuk k=3, 4, 5, LRC dengan r=2 dan berbeza t bertekad.
Qiang FU
Air Force Engineering University
Ruihu LI
Air Force Engineering University
Luobin GUO
Air Force Engineering University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Qiang FU, Ruihu LI, Luobin GUO, "Locally Repairable Codes from Cyclic Codes and Generalized Quadrangles" in IEICE TRANSACTIONS on Fundamentals,
vol. E103-A, no. 7, pp. 947-950, July 2020, doi: 10.1587/transfun.2019EAL2170.
Abstract: Locally repairable codes (LRCs) with locality r and availability t are a class of codes which can recover data from erasures by accessing other t disjoint repair groups, that every group contain at most r other code symbols. This letter will investigate constructions of LRCs derived from cyclic codes and generalized quadrangle. On the one hand, two classes of cyclic LRC with given locality m-1 and availability em are proposed via trace function. Our LRCs have the same locality, availability, minimum distance and code rate, but have short length and low dimension. On the other hand, an LRC with $(2,(p+1)lfloorrac{s}{2}
floor)$ is presented based on sets of points in PG(k, q) which form generalized quadrangles with order (s, p). For k=3, 4, 5, LRCs with r=2 and different t are determined.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2019EAL2170/_p
Salinan
@ARTICLE{e103-a_7_947,
author={Qiang FU, Ruihu LI, Luobin GUO, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Locally Repairable Codes from Cyclic Codes and Generalized Quadrangles},
year={2020},
volume={E103-A},
number={7},
pages={947-950},
abstract={Locally repairable codes (LRCs) with locality r and availability t are a class of codes which can recover data from erasures by accessing other t disjoint repair groups, that every group contain at most r other code symbols. This letter will investigate constructions of LRCs derived from cyclic codes and generalized quadrangle. On the one hand, two classes of cyclic LRC with given locality m-1 and availability em are proposed via trace function. Our LRCs have the same locality, availability, minimum distance and code rate, but have short length and low dimension. On the other hand, an LRC with $(2,(p+1)lfloorrac{s}{2}
floor)$ is presented based on sets of points in PG(k, q) which form generalized quadrangles with order (s, p). For k=3, 4, 5, LRCs with r=2 and different t are determined.},
keywords={},
doi={10.1587/transfun.2019EAL2170},
ISSN={1745-1337},
month={July},}
Salinan
TY - JOUR
TI - Locally Repairable Codes from Cyclic Codes and Generalized Quadrangles
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 947
EP - 950
AU - Qiang FU
AU - Ruihu LI
AU - Luobin GUO
PY - 2020
DO - 10.1587/transfun.2019EAL2170
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E103-A
IS - 7
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - July 2020
AB - Locally repairable codes (LRCs) with locality r and availability t are a class of codes which can recover data from erasures by accessing other t disjoint repair groups, that every group contain at most r other code symbols. This letter will investigate constructions of LRCs derived from cyclic codes and generalized quadrangle. On the one hand, two classes of cyclic LRC with given locality m-1 and availability em are proposed via trace function. Our LRCs have the same locality, availability, minimum distance and code rate, but have short length and low dimension. On the other hand, an LRC with $(2,(p+1)lfloorrac{s}{2}
floor)$ is presented based on sets of points in PG(k, q) which form generalized quadrangles with order (s, p). For k=3, 4, 5, LRCs with r=2 and different t are determined.
ER -