The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Kereta api bawah tanah Tokyo ialah salah satu rangkaian kereta api bawah tanah yang paling kompleks di dunia dan sukar untuk mengira peta metro yang boleh dibaca secara visual menggunakan kaedah susun atur sedia ada. Dalam kertas kerja ini, kami membentangkan kaedah baharu yang boleh menjana peta metro yang kompleks seperti rangkaian kereta bawah tanah Tokyo. Kaedah kami terdiri daripada dua fasa. Fasa pertama menjana peta metro kasar. Ia menguraikan rangkaian metro kepada subgraf yang lebih kecil dan sebahagiannya menjana peta metro kasar. Dalam fasa kedua, kami menggunakan teknik carian tempatan untuk meningkatkan kualiti estetik peta metro kasar. Keputusan eksperimen termasuk peta metro Tokyo ditunjukkan.
Masahiro ONDA
Chuo University
Masaki MORIGUCHI
Chuo University
Keiko IMAI
Chuo University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Masahiro ONDA, Masaki MORIGUCHI, Keiko IMAI, "Automatic Drawing of Complex Metro Maps" in IEICE TRANSACTIONS on Fundamentals,
vol. E104-A, no. 9, pp. 1150-1155, September 2021, doi: 10.1587/transfun.2020DMP0019.
Abstract: The Tokyo subway is one of the most complex subway networks in the world and it is difficult to compute a visually readable metro map using existing layout methods. In this paper, we present a new method that can generate complex metro maps such as the Tokyo subway network. Our method consists of two phases. The first phase generates rough metro maps. It decomposes the metro networks into smaller subgraphs and partially generates rough metro maps. In the second phase, we use a local search technique to improve the aesthetic quality of the rough metro maps. The experimental results including the Tokyo metro map are shown.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2020DMP0019/_p
Salinan
@ARTICLE{e104-a_9_1150,
author={Masahiro ONDA, Masaki MORIGUCHI, Keiko IMAI, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Automatic Drawing of Complex Metro Maps},
year={2021},
volume={E104-A},
number={9},
pages={1150-1155},
abstract={The Tokyo subway is one of the most complex subway networks in the world and it is difficult to compute a visually readable metro map using existing layout methods. In this paper, we present a new method that can generate complex metro maps such as the Tokyo subway network. Our method consists of two phases. The first phase generates rough metro maps. It decomposes the metro networks into smaller subgraphs and partially generates rough metro maps. In the second phase, we use a local search technique to improve the aesthetic quality of the rough metro maps. The experimental results including the Tokyo metro map are shown.},
keywords={},
doi={10.1587/transfun.2020DMP0019},
ISSN={1745-1337},
month={September},}
Salinan
TY - JOUR
TI - Automatic Drawing of Complex Metro Maps
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1150
EP - 1155
AU - Masahiro ONDA
AU - Masaki MORIGUCHI
AU - Keiko IMAI
PY - 2021
DO - 10.1587/transfun.2020DMP0019
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E104-A
IS - 9
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - September 2021
AB - The Tokyo subway is one of the most complex subway networks in the world and it is difficult to compute a visually readable metro map using existing layout methods. In this paper, we present a new method that can generate complex metro maps such as the Tokyo subway network. Our method consists of two phases. The first phase generates rough metro maps. It decomposes the metro networks into smaller subgraphs and partially generates rough metro maps. In the second phase, we use a local search technique to improve the aesthetic quality of the rough metro maps. The experimental results including the Tokyo metro map are shown.
ER -