The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
pandangan teks lengkap
126
Kod boleh dibaiki setempat (LRC) ialah sejenis kod pemadaman baharu yang direka untuk sistem storan teragih moden (DSS). Untuk mendapatkan LRC terner pada jarak 6, pertama sekali, kami mencadangkan pembinaan dengan kumpulan pembaikan berpisah dan membina beberapa keluarga LRC dengan 1 ≤ r ≤ 6, dengan kod dengan 3 ≤ r ≤ 6 diperoleh melalui algoritma carian. Kemudian, kami mencadangkan kaedah baharu untuk memanjangkan panjang kod tanpa mengubah jarak. Dengan menggunakan kaedah seperti pengembangan dan pemadaman, kami memperoleh lebih banyak LRC daripada LRC yang diketahui. LRC yang terhasil adalah optimum atau hampir optimum dari segi terikat Cadambe-Mazumdar (CM).
Youliang ZHENG
Air Force Engineering University
Ruihu LI
Air Force Engineering University
Jingjie LV
Air Force Engineering University
Qiang FU
Air Force Engineering University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Youliang ZHENG, Ruihu LI, Jingjie LV, Qiang FU, "Constructions and Some Search Results of Ternary LRCs with d = 6" in IEICE TRANSACTIONS on Fundamentals,
vol. E104-A, no. 3, pp. 644-649, March 2021, doi: 10.1587/transfun.2020EAL2070.
Abstract: Locally repairable codes (LRCs) are a type of new erasure codes designed for modern distributed storage systems (DSSs). In order to obtain ternary LRCs of distance 6, firstly, we propose constructions with disjoint repair groups and construct several families of LRCs with 1 ≤ r ≤ 6, where codes with 3 ≤ r ≤ 6 are obtained through a search algorithm. Then, we propose a new method to extend the length of codes without changing the distance. By employing the methods such as expansion and deletion, we obtain more LRCs from a known LRC. The resulting LRCs are optimal or near optimal in terms of the Cadambe-Mazumdar (C-M) bound.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2020EAL2070/_p
Salinan
@ARTICLE{e104-a_3_644,
author={Youliang ZHENG, Ruihu LI, Jingjie LV, Qiang FU, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Constructions and Some Search Results of Ternary LRCs with d = 6},
year={2021},
volume={E104-A},
number={3},
pages={644-649},
abstract={Locally repairable codes (LRCs) are a type of new erasure codes designed for modern distributed storage systems (DSSs). In order to obtain ternary LRCs of distance 6, firstly, we propose constructions with disjoint repair groups and construct several families of LRCs with 1 ≤ r ≤ 6, where codes with 3 ≤ r ≤ 6 are obtained through a search algorithm. Then, we propose a new method to extend the length of codes without changing the distance. By employing the methods such as expansion and deletion, we obtain more LRCs from a known LRC. The resulting LRCs are optimal or near optimal in terms of the Cadambe-Mazumdar (C-M) bound.},
keywords={},
doi={10.1587/transfun.2020EAL2070},
ISSN={1745-1337},
month={March},}
Salinan
TY - JOUR
TI - Constructions and Some Search Results of Ternary LRCs with d = 6
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 644
EP - 649
AU - Youliang ZHENG
AU - Ruihu LI
AU - Jingjie LV
AU - Qiang FU
PY - 2021
DO - 10.1587/transfun.2020EAL2070
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E104-A
IS - 3
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - March 2021
AB - Locally repairable codes (LRCs) are a type of new erasure codes designed for modern distributed storage systems (DSSs). In order to obtain ternary LRCs of distance 6, firstly, we propose constructions with disjoint repair groups and construct several families of LRCs with 1 ≤ r ≤ 6, where codes with 3 ≤ r ≤ 6 are obtained through a search algorithm. Then, we propose a new method to extend the length of codes without changing the distance. By employing the methods such as expansion and deletion, we obtain more LRCs from a known LRC. The resulting LRCs are optimal or near optimal in terms of the Cadambe-Mazumdar (C-M) bound.
ER -