The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Makalah ini mencadangkan pemerhati teragih pada rangkaian sensor, di mana komunikasi pada rangkaian dilakukan secara rawak. Kerja ini adalah lanjutan semula jadi daripada pendekatan penapis konsensus Kalman kepada kes yang melibatkan komunikasi rawak. Dalam kedua-dua kes komunikasi dua hala dan satu arah, memperoleh keadaan yang menjamin peningkatan penumpuan ralat anggaran berbanding dengan kes tanpa komunikasi diperoleh. Syarat yang diperolehi adalah lebih praktikal daripada kajian terdahulu dan memberikan keuntungan koperasi yang sesuai untuk kebarangkalian komunikasi yang diberikan. Keberkesanan kaedah yang dicadangkan disahkan oleh simulasi komputer.
Yuh YAMASHITA
Hokkaido University
Haruka SUMITA
Hokkaido University
Ryosuke ADACHI
Yamaguch University
Koichi KOBAYASHI
Hokkaido University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Yuh YAMASHITA, Haruka SUMITA, Ryosuke ADACHI, Koichi KOBAYASHI, "Distributed Observer Design on Sensor Networks with Random Communication" in IEICE TRANSACTIONS on Fundamentals,
vol. E104-A, no. 3, pp. 613-621, March 2021, doi: 10.1587/transfun.2020EAP1039.
Abstract: This paper proposes a distributed observer on a sensor network, where communication on the network is randomly performed. This work is a natural extension of Kalman consensus filter approach to the cases involving random communication. In both bidirectional and unidirectional communication cases, gain conditions that guarantee improvement of estimation error convergence compared to the case with no communication are obtained. The obtained conditions are more practical than those of previous studies and give appropriate cooperative gains for a given communication probability. The effectiveness of the proposed method is confirmed by computer simulations.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2020EAP1039/_p
Salinan
@ARTICLE{e104-a_3_613,
author={Yuh YAMASHITA, Haruka SUMITA, Ryosuke ADACHI, Koichi KOBAYASHI, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Distributed Observer Design on Sensor Networks with Random Communication},
year={2021},
volume={E104-A},
number={3},
pages={613-621},
abstract={This paper proposes a distributed observer on a sensor network, where communication on the network is randomly performed. This work is a natural extension of Kalman consensus filter approach to the cases involving random communication. In both bidirectional and unidirectional communication cases, gain conditions that guarantee improvement of estimation error convergence compared to the case with no communication are obtained. The obtained conditions are more practical than those of previous studies and give appropriate cooperative gains for a given communication probability. The effectiveness of the proposed method is confirmed by computer simulations.},
keywords={},
doi={10.1587/transfun.2020EAP1039},
ISSN={1745-1337},
month={March},}
Salinan
TY - JOUR
TI - Distributed Observer Design on Sensor Networks with Random Communication
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 613
EP - 621
AU - Yuh YAMASHITA
AU - Haruka SUMITA
AU - Ryosuke ADACHI
AU - Koichi KOBAYASHI
PY - 2021
DO - 10.1587/transfun.2020EAP1039
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E104-A
IS - 3
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - March 2021
AB - This paper proposes a distributed observer on a sensor network, where communication on the network is randomly performed. This work is a natural extension of Kalman consensus filter approach to the cases involving random communication. In both bidirectional and unidirectional communication cases, gain conditions that guarantee improvement of estimation error convergence compared to the case with no communication are obtained. The obtained conditions are more practical than those of previous studies and give appropriate cooperative gains for a given communication probability. The effectiveness of the proposed method is confirmed by computer simulations.
ER -