The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Kertas kerja ini membentangkan kod Golomb (XDG) domain lanjutan, lanjutan kod Golomb untuk sumber geometri yang jarang serta generalisasi kod Golomb-Rice (XDGR) domain lanjutan, berdasarkan idea pembolehubah tetap kepada pembolehubah hampir serta-merta kod panjang (AIFV). Menunjukkan bahawa pengekodan XDGR boleh ditafsirkan sebagai penggunaan lanjutan kod yang dicadangkan dalam kerja-kerja terdahulu, makalah ini membincangkan dua fakta berikut: Kod XDG yang dicadangkan boleh dibina sebagai kod AIFV yang berkaitan dengan kod Golomb seperti yang dilakukan oleh kod XDGR kepada kod Rice ; Kod XDG dan Golomb adalah simetri dalam erti kata redundansi relatif. Kod XDG yang dicadangkan boleh digunakan dengan cekap untuk memampatkan sumber geometri yang terlalu jarang untuk kod Golomb dan Rice konvensional. Mengikut simetri, redundansi relatifnya dijamin serendah kod Golomb yang memampatkan sumber geometri bukan jarang. Berdasarkan fakta ini, parameter kod XDG yang dicadangkan, yang lebih boleh ditala secara halus daripada kod XDGR konvensional, boleh dioptimumkan untuk input yang diberikan menggunakan teknik konvensional. Oleh itu, ia dijangka lebih berguna untuk banyak aplikasi pengekodan yang berurusan dengan sumber geometri pada kadar bit yang rendah.
Ryosuke SUGIURA
Nippon Telegraph and Telephone Corporation
Yutaka KAMAMOTO
Nippon Telegraph and Telephone Corporation
Takehiro MORIYA
Nippon Telegraph and Telephone Corporation
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Ryosuke SUGIURA, Yutaka KAMAMOTO, Takehiro MORIYA, "Extended-Domain Golomb Code and Symmetry of Relative Redundancy" in IEICE TRANSACTIONS on Fundamentals,
vol. E104-A, no. 8, pp. 1033-1042, August 2021, doi: 10.1587/transfun.2020EAP1099.
Abstract: This paper presents extended-domain Golomb (XDG) code, an extension of Golomb code for sparse geometric sources as well as a generalization of extended-domain Golomb-Rice (XDGR) code, based on the idea of almost instantaneous fixed-to-variable length (AIFV) codes. Showing that the XDGR encoding can be interpreted as extended usage of the code proposed in the previous works, this paper discusses the following two facts: The proposed XDG code can be constructed as an AIFV code relating to Golomb code as XDGR code does to Rice code; XDG and Golomb codes are symmetric in the sense of relative redundancy. The proposed XDG code can be efficiently used for losslessly compressing geometric sources too sparse for the conventional Golomb and Rice codes. According to the symmetry, its relative redundancy is guaranteed to be as low as Golomb code compressing non-sparse geometric sources. Awing to this fact, the parameter of the proposed XDG code, which is more finely tunable than the conventional XDGR code, can be optimized for given inputs using the conventional techniques. Therefore, it is expected to be more useful for many coding applications that deal with geometric sources at low bit rates.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2020EAP1099/_p
Salinan
@ARTICLE{e104-a_8_1033,
author={Ryosuke SUGIURA, Yutaka KAMAMOTO, Takehiro MORIYA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Extended-Domain Golomb Code and Symmetry of Relative Redundancy},
year={2021},
volume={E104-A},
number={8},
pages={1033-1042},
abstract={This paper presents extended-domain Golomb (XDG) code, an extension of Golomb code for sparse geometric sources as well as a generalization of extended-domain Golomb-Rice (XDGR) code, based on the idea of almost instantaneous fixed-to-variable length (AIFV) codes. Showing that the XDGR encoding can be interpreted as extended usage of the code proposed in the previous works, this paper discusses the following two facts: The proposed XDG code can be constructed as an AIFV code relating to Golomb code as XDGR code does to Rice code; XDG and Golomb codes are symmetric in the sense of relative redundancy. The proposed XDG code can be efficiently used for losslessly compressing geometric sources too sparse for the conventional Golomb and Rice codes. According to the symmetry, its relative redundancy is guaranteed to be as low as Golomb code compressing non-sparse geometric sources. Awing to this fact, the parameter of the proposed XDG code, which is more finely tunable than the conventional XDGR code, can be optimized for given inputs using the conventional techniques. Therefore, it is expected to be more useful for many coding applications that deal with geometric sources at low bit rates.},
keywords={},
doi={10.1587/transfun.2020EAP1099},
ISSN={1745-1337},
month={August},}
Salinan
TY - JOUR
TI - Extended-Domain Golomb Code and Symmetry of Relative Redundancy
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1033
EP - 1042
AU - Ryosuke SUGIURA
AU - Yutaka KAMAMOTO
AU - Takehiro MORIYA
PY - 2021
DO - 10.1587/transfun.2020EAP1099
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E104-A
IS - 8
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - August 2021
AB - This paper presents extended-domain Golomb (XDG) code, an extension of Golomb code for sparse geometric sources as well as a generalization of extended-domain Golomb-Rice (XDGR) code, based on the idea of almost instantaneous fixed-to-variable length (AIFV) codes. Showing that the XDGR encoding can be interpreted as extended usage of the code proposed in the previous works, this paper discusses the following two facts: The proposed XDG code can be constructed as an AIFV code relating to Golomb code as XDGR code does to Rice code; XDG and Golomb codes are symmetric in the sense of relative redundancy. The proposed XDG code can be efficiently used for losslessly compressing geometric sources too sparse for the conventional Golomb and Rice codes. According to the symmetry, its relative redundancy is guaranteed to be as low as Golomb code compressing non-sparse geometric sources. Awing to this fact, the parameter of the proposed XDG code, which is more finely tunable than the conventional XDGR code, can be optimized for given inputs using the conventional techniques. Therefore, it is expected to be more useful for many coding applications that deal with geometric sources at low bit rates.
ER -