The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Kaedah untuk pengoptimuman tenaga masa jalan berdasarkan voltan bekalan (Vdd) dan voltan ambang (Vth) penskalaan dicadangkan. Kertas ini merujuk kepada pasangan voltan optimum, yang meminimumkan penggunaan tenaga litar LSI di bawah kekangan kelewatan sasaran, sebagai Titik Tenaga Minimum (MEP). MEP berubah-ubah secara dinamik bergantung pada keadaan operasi yang ditentukan oleh kekangan kelewatan sasaran, faktor aktiviti dan suhu cip. Untuk menjejaki MEP, kertas kerja ini mencadangkan fungsi berterusan bentuk tertutup yang menentukan MEP ke atas wilayah prestasi operasi yang luas antara kawasan ambang atas ke rantau subambang. Berdasarkan formula penentuan MEP, algoritma penjejakan MEP juga dicadangkan. Algoritma penjejakan MEP menganggarkan MEP walaupun keadaan operasi berubah secara meluas. Keputusan pengukuran berdasarkan pemproses RISC 32-bit yang direka dalam teknologi proses Silicon On Thin Buried oxide (SOTB) 65-nm menunjukkan bahawa kaedah yang dicadangkan menganggarkan MEP dalam kehilangan tenaga sebanyak 5% berbanding dengan operasi MEP sebenar.
Shoya SONODA
Kyoto University
Jun SHIOMI
Kyoto University
Hidetoshi ONODERA
Kyoto University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Shoya SONODA, Jun SHIOMI, Hidetoshi ONODERA, "Supply and Threshold Voltage Scaling for Minimum Energy Operation over a Wide Operating Performance Region" in IEICE TRANSACTIONS on Fundamentals,
vol. E104-A, no. 11, pp. 1566-1576, November 2021, doi: 10.1587/transfun.2020KEP0013.
Abstract: A method for runtime energy optimization based on the supply voltage (Vdd) and the threshold voltage (Vth) scaling is proposed. This paper refers to the optimal voltage pair, which minimizes the energy consumption of LSI circuits under a target delay constraint, as a Minimum Energy Point (MEP). The MEP dynamically fluctuates depending on the operating conditions determined by a target delay constraint, an activity factor and a chip temperature. In order to track the MEP, this paper proposes a closed-form continuous function that determines the MEP over a wide operating performance region ranging from the above-threshold region down to the sub-threshold region. Based on the MEP determination formula, an MEP tracking algorithm is also proposed. The MEP tracking algorithm estimates the MEP even though the operating conditions widely change. Measurement results based on a 32-bit RISC processor fabricated in a 65-nm Silicon On Thin Buried oxide (SOTB) process technology show that the proposed method estimates the MEP within a 5% energy loss in comparison with the actual MEP operation.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2020KEP0013/_p
Salinan
@ARTICLE{e104-a_11_1566,
author={Shoya SONODA, Jun SHIOMI, Hidetoshi ONODERA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Supply and Threshold Voltage Scaling for Minimum Energy Operation over a Wide Operating Performance Region},
year={2021},
volume={E104-A},
number={11},
pages={1566-1576},
abstract={A method for runtime energy optimization based on the supply voltage (Vdd) and the threshold voltage (Vth) scaling is proposed. This paper refers to the optimal voltage pair, which minimizes the energy consumption of LSI circuits under a target delay constraint, as a Minimum Energy Point (MEP). The MEP dynamically fluctuates depending on the operating conditions determined by a target delay constraint, an activity factor and a chip temperature. In order to track the MEP, this paper proposes a closed-form continuous function that determines the MEP over a wide operating performance region ranging from the above-threshold region down to the sub-threshold region. Based on the MEP determination formula, an MEP tracking algorithm is also proposed. The MEP tracking algorithm estimates the MEP even though the operating conditions widely change. Measurement results based on a 32-bit RISC processor fabricated in a 65-nm Silicon On Thin Buried oxide (SOTB) process technology show that the proposed method estimates the MEP within a 5% energy loss in comparison with the actual MEP operation.},
keywords={},
doi={10.1587/transfun.2020KEP0013},
ISSN={1745-1337},
month={November},}
Salinan
TY - JOUR
TI - Supply and Threshold Voltage Scaling for Minimum Energy Operation over a Wide Operating Performance Region
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1566
EP - 1576
AU - Shoya SONODA
AU - Jun SHIOMI
AU - Hidetoshi ONODERA
PY - 2021
DO - 10.1587/transfun.2020KEP0013
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E104-A
IS - 11
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - November 2021
AB - A method for runtime energy optimization based on the supply voltage (Vdd) and the threshold voltage (Vth) scaling is proposed. This paper refers to the optimal voltage pair, which minimizes the energy consumption of LSI circuits under a target delay constraint, as a Minimum Energy Point (MEP). The MEP dynamically fluctuates depending on the operating conditions determined by a target delay constraint, an activity factor and a chip temperature. In order to track the MEP, this paper proposes a closed-form continuous function that determines the MEP over a wide operating performance region ranging from the above-threshold region down to the sub-threshold region. Based on the MEP determination formula, an MEP tracking algorithm is also proposed. The MEP tracking algorithm estimates the MEP even though the operating conditions widely change. Measurement results based on a 32-bit RISC processor fabricated in a 65-nm Silicon On Thin Buried oxide (SOTB) process technology show that the proposed method estimates the MEP within a 5% energy loss in comparison with the actual MEP operation.
ER -