The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Dengan kemajuan pesat teknologi nanofotonik bersepadu, seni bina rangkaian saraf optik telah disiasat secara meluas. Memandangkan rangkaian saraf optik boleh melengkapkan pemprosesan inferens hanya dengan menyebarkan isyarat optik dalam rangkaian, ia dijangka lebih daripada satu susunan magnitud lebih pantas daripada pelaksanaan rangkaian saraf tiruan (ANN) sahaja. Dalam makalah ini, kami mula-mula mencadangkan litar pendaraban vektor-matriks optik (VMM) menggunakan pemultipleksan pembahagian panjang gelombang, yang membolehkan pemprosesan inferens pada kelajuan cahaya dengan jalur lebar ultra. Makalah ini seterusnya mencadangkan pelaksanaan litar optoelektronik untuk normalisasi kelompok dan fungsi pengaktifan, yang dengan ketara meningkatkan ketepatan pemprosesan inferens tanpa mengorbankan prestasi kelajuan. Akhir sekali, menggunakan persekitaran maya untuk pembelajaran mesin dan simulator litar optoelektronik, kami menunjukkan operasi ultra-pantas dan tepat bagi litar ANN optik-elektronik.
Naoki HATTORI
Nagoya University
Jun SHIOMI
Kyoto University
Yutaka MASUDA
Nagoya University
Tohru ISHIHARA
Nagoya University
Akihiko SHINYA
NTT Nanophotonics Center,NTT Basic Research Laboratories
Masaya NOTOMI
NTT Nanophotonics Center,NTT Basic Research Laboratories
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Naoki HATTORI, Jun SHIOMI, Yutaka MASUDA, Tohru ISHIHARA, Akihiko SHINYA, Masaya NOTOMI, "Neural Network Calculations at the Speed of Light Using Optical Vector-Matrix Multiplication and Optoelectronic Activation" in IEICE TRANSACTIONS on Fundamentals,
vol. E104-A, no. 11, pp. 1477-1487, November 2021, doi: 10.1587/transfun.2020KEP0016.
Abstract: With the rapid progress of the integrated nanophotonics technology, the optical neural network architecture has been widely investigated. Since the optical neural network can complete the inference processing just by propagating the optical signal in the network, it is expected more than one order of magnitude faster than the electronics-only implementation of artificial neural networks (ANN). In this paper, we first propose an optical vector-matrix multiplication (VMM) circuit using wavelength division multiplexing, which enables inference processing at the speed of light with ultra-wideband. This paper next proposes optoelectronic circuit implementation for batch normalization and activation function, which significantly improves the accuracy of the inference processing without sacrificing the speed performance. Finally, using a virtual environment for machine learning and an optoelectronic circuit simulator, we demonstrate the ultra-fast and accurate operation of the optical-electronic ANN circuit.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2020KEP0016/_p
Salinan
@ARTICLE{e104-a_11_1477,
author={Naoki HATTORI, Jun SHIOMI, Yutaka MASUDA, Tohru ISHIHARA, Akihiko SHINYA, Masaya NOTOMI, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Neural Network Calculations at the Speed of Light Using Optical Vector-Matrix Multiplication and Optoelectronic Activation},
year={2021},
volume={E104-A},
number={11},
pages={1477-1487},
abstract={With the rapid progress of the integrated nanophotonics technology, the optical neural network architecture has been widely investigated. Since the optical neural network can complete the inference processing just by propagating the optical signal in the network, it is expected more than one order of magnitude faster than the electronics-only implementation of artificial neural networks (ANN). In this paper, we first propose an optical vector-matrix multiplication (VMM) circuit using wavelength division multiplexing, which enables inference processing at the speed of light with ultra-wideband. This paper next proposes optoelectronic circuit implementation for batch normalization and activation function, which significantly improves the accuracy of the inference processing without sacrificing the speed performance. Finally, using a virtual environment for machine learning and an optoelectronic circuit simulator, we demonstrate the ultra-fast and accurate operation of the optical-electronic ANN circuit.},
keywords={},
doi={10.1587/transfun.2020KEP0016},
ISSN={1745-1337},
month={November},}
Salinan
TY - JOUR
TI - Neural Network Calculations at the Speed of Light Using Optical Vector-Matrix Multiplication and Optoelectronic Activation
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1477
EP - 1487
AU - Naoki HATTORI
AU - Jun SHIOMI
AU - Yutaka MASUDA
AU - Tohru ISHIHARA
AU - Akihiko SHINYA
AU - Masaya NOTOMI
PY - 2021
DO - 10.1587/transfun.2020KEP0016
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E104-A
IS - 11
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - November 2021
AB - With the rapid progress of the integrated nanophotonics technology, the optical neural network architecture has been widely investigated. Since the optical neural network can complete the inference processing just by propagating the optical signal in the network, it is expected more than one order of magnitude faster than the electronics-only implementation of artificial neural networks (ANN). In this paper, we first propose an optical vector-matrix multiplication (VMM) circuit using wavelength division multiplexing, which enables inference processing at the speed of light with ultra-wideband. This paper next proposes optoelectronic circuit implementation for batch normalization and activation function, which significantly improves the accuracy of the inference processing without sacrificing the speed performance. Finally, using a virtual environment for machine learning and an optoelectronic circuit simulator, we demonstrate the ultra-fast and accurate operation of the optical-electronic ANN circuit.
ER -