The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Diilhamkan oleh idea yang disebabkan oleh Levenshtein, kami menggunakan kekangan zon korelasi rendah dalam analisis korelasi aperiodik kuasa dua berwajaran. Kemudian kami memperoleh batas bawah pada ukuran untuk set jujukan kuasi-pelengkap dengan zon korelasi rendah (LCZ-QCSS). Kami membincangkan syarat ketat untuk sempadan yang dicadangkan. Ternyata sempadan yang dicadangkan lebih ketat daripada Liu-Guan-Ng-Chen untuk LCZ-QCSS. Kami juga memperoleh sempadan bawah untuk QCSS, yang menambah baik terikat Liu-Guan-Mow secara umum.
Bing LIU
Southwest Jiaotong University
Zhengchun ZHOU
Southwest Jiaotong University
Udaya PARAMPALLI
University of Melbourne
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Bing LIU, Zhengchun ZHOU, Udaya PARAMPALLI, "A Tighter Correlation Lower Bound for Quasi-Complementary Sequence Sets with Low Correlation Zone" in IEICE TRANSACTIONS on Fundamentals,
vol. E104-A, no. 2, pp. 392-398, February 2021, doi: 10.1587/transfun.2020SDP0006.
Abstract: Inspired by an idea due to Levenshtein, we apply the low correlation zone constraint in the analysis of the weighted mean square aperiodic correlation. Then we derive a lower bound on the measure for quasi-complementary sequence sets with low correlation zone (LCZ-QCSS). We discuss the conditions of tightness for the proposed bound. It turns out that the proposed bound is tighter than Liu-Guan-Ng-Chen bound for LCZ-QCSS. We also derive a lower bound for QCSS, which improves the Liu-Guan-Mow bound in general.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2020SDP0006/_p
Salinan
@ARTICLE{e104-a_2_392,
author={Bing LIU, Zhengchun ZHOU, Udaya PARAMPALLI, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={A Tighter Correlation Lower Bound for Quasi-Complementary Sequence Sets with Low Correlation Zone},
year={2021},
volume={E104-A},
number={2},
pages={392-398},
abstract={Inspired by an idea due to Levenshtein, we apply the low correlation zone constraint in the analysis of the weighted mean square aperiodic correlation. Then we derive a lower bound on the measure for quasi-complementary sequence sets with low correlation zone (LCZ-QCSS). We discuss the conditions of tightness for the proposed bound. It turns out that the proposed bound is tighter than Liu-Guan-Ng-Chen bound for LCZ-QCSS. We also derive a lower bound for QCSS, which improves the Liu-Guan-Mow bound in general.},
keywords={},
doi={10.1587/transfun.2020SDP0006},
ISSN={1745-1337},
month={February},}
Salinan
TY - JOUR
TI - A Tighter Correlation Lower Bound for Quasi-Complementary Sequence Sets with Low Correlation Zone
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 392
EP - 398
AU - Bing LIU
AU - Zhengchun ZHOU
AU - Udaya PARAMPALLI
PY - 2021
DO - 10.1587/transfun.2020SDP0006
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E104-A
IS - 2
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - February 2021
AB - Inspired by an idea due to Levenshtein, we apply the low correlation zone constraint in the analysis of the weighted mean square aperiodic correlation. Then we derive a lower bound on the measure for quasi-complementary sequence sets with low correlation zone (LCZ-QCSS). We discuss the conditions of tightness for the proposed bound. It turns out that the proposed bound is tighter than Liu-Guan-Ng-Chen bound for LCZ-QCSS. We also derive a lower bound for QCSS, which improves the Liu-Guan-Mow bound in general.
ER -