The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Dalam makalah ini, kami mengkaji kod metrik pangkat dua pelengkap linear Hermitian (disingkat LCD Hermitian). Kelas kod Gabidulin umum LCD Hermitian dibina oleh qm-asas dwi-diri Fq2m atas Fq2. Selain itu, bilangan tepat qm-asas dwi-diri Fq2m atas Fq2 diperolehi. Akibatnya, sempadan atas dan sempadan bawah bilangan kod Gabidulin umum LCD Hermitian yang dibina ditentukan.
Xubo ZHAO
China University of Petroleum (East China)
Xiaoping LI
China University of Petroleum (East China)
Runzhi YANG
China University of Petroleum (East China)
Qingqing ZHANG
China University of Petroleum (East China)
Jinpeng LIU
China University of Petroleum (East China)
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Xubo ZHAO, Xiaoping LI, Runzhi YANG, Qingqing ZHANG, Jinpeng LIU, "On Hermitian LCD Generalized Gabidulin Codes" in IEICE TRANSACTIONS on Fundamentals,
vol. E105-A, no. 3, pp. 607-610, March 2022, doi: 10.1587/transfun.2021EAL2067.
Abstract: In this paper, we study Hermitian linear complementary dual (abbreviated Hermitian LCD) rank metric codes. A class of Hermitian LCD generalized Gabidulin codes are constructed by qm-self-dual bases of Fq2m over Fq2. Moreover, the exact number of qm-self-dual bases of Fq2m over Fq2 is derived. As a consequence, an upper bound and a lower bound of the number of the constructed Hermitian LCD generalized Gabidulin codes are determined.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2021EAL2067/_p
Salinan
@ARTICLE{e105-a_3_607,
author={Xubo ZHAO, Xiaoping LI, Runzhi YANG, Qingqing ZHANG, Jinpeng LIU, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={On Hermitian LCD Generalized Gabidulin Codes},
year={2022},
volume={E105-A},
number={3},
pages={607-610},
abstract={In this paper, we study Hermitian linear complementary dual (abbreviated Hermitian LCD) rank metric codes. A class of Hermitian LCD generalized Gabidulin codes are constructed by qm-self-dual bases of Fq2m over Fq2. Moreover, the exact number of qm-self-dual bases of Fq2m over Fq2 is derived. As a consequence, an upper bound and a lower bound of the number of the constructed Hermitian LCD generalized Gabidulin codes are determined.},
keywords={},
doi={10.1587/transfun.2021EAL2067},
ISSN={1745-1337},
month={March},}
Salinan
TY - JOUR
TI - On Hermitian LCD Generalized Gabidulin Codes
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 607
EP - 610
AU - Xubo ZHAO
AU - Xiaoping LI
AU - Runzhi YANG
AU - Qingqing ZHANG
AU - Jinpeng LIU
PY - 2022
DO - 10.1587/transfun.2021EAL2067
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E105-A
IS - 3
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - March 2022
AB - In this paper, we study Hermitian linear complementary dual (abbreviated Hermitian LCD) rank metric codes. A class of Hermitian LCD generalized Gabidulin codes are constructed by qm-self-dual bases of Fq2m over Fq2. Moreover, the exact number of qm-self-dual bases of Fq2m over Fq2 is derived. As a consequence, an upper bound and a lower bound of the number of the constructed Hermitian LCD generalized Gabidulin codes are determined.
ER -