The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Kertas kerja ini menumpukan pada kelas jujukan pseudorandom yang dihasilkan dengan menggabungkan q-urutan-m dan aksara kuadratik di atas medan terhingga tertib ganjil, dipanggil jujukan NTU umum binari. Ditunjukkan bahawa hubungan antara jujukan sub-jujukan NTU umum binari boleh dirumuskan sebagai struktur gabungan yang dipanggil reka bentuk Hadamard. Akibatnya, struktur gabungan menyamaratakan struktur kumpulan yang ditemui oleh Kodera et al. (IEICE Trans. Fundamentals, vol.E102-A, no.12, ms.1659-1667, 2019) dan membawa kepada penjelasan geometri terhingga untuk struktur kumpulan yang disiasat.
Xiao-Nan LU
University of Yamanashi
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Xiao-Nan LU, "Combinatorial Structures Behind Binary Generalized NTU Sequences" in IEICE TRANSACTIONS on Fundamentals,
vol. E106-A, no. 3, pp. 440-444, March 2023, doi: 10.1587/transfun.2022TAL0004.
Abstract: This paper concentrates on a class of pseudorandom sequences generated by combining q-ary m-sequences and quadratic characters over a finite field of odd order, called binary generalized NTU sequences. It is shown that the relationship among the sub-sequences of binary generalized NTU sequences can be formulated as combinatorial structures called Hadamard designs. As a consequence, the combinatorial structures generalize the group structure discovered by Kodera et al. (IEICE Trans. Fundamentals, vol.E102-A, no.12, pp.1659-1667, 2019) and lead to a finite-geometric explanation for the investigated group structure.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2022TAL0004/_p
Salinan
@ARTICLE{e106-a_3_440,
author={Xiao-Nan LU, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Combinatorial Structures Behind Binary Generalized NTU Sequences},
year={2023},
volume={E106-A},
number={3},
pages={440-444},
abstract={This paper concentrates on a class of pseudorandom sequences generated by combining q-ary m-sequences and quadratic characters over a finite field of odd order, called binary generalized NTU sequences. It is shown that the relationship among the sub-sequences of binary generalized NTU sequences can be formulated as combinatorial structures called Hadamard designs. As a consequence, the combinatorial structures generalize the group structure discovered by Kodera et al. (IEICE Trans. Fundamentals, vol.E102-A, no.12, pp.1659-1667, 2019) and lead to a finite-geometric explanation for the investigated group structure.},
keywords={},
doi={10.1587/transfun.2022TAL0004},
ISSN={1745-1337},
month={March},}
Salinan
TY - JOUR
TI - Combinatorial Structures Behind Binary Generalized NTU Sequences
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 440
EP - 444
AU - Xiao-Nan LU
PY - 2023
DO - 10.1587/transfun.2022TAL0004
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E106-A
IS - 3
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - March 2023
AB - This paper concentrates on a class of pseudorandom sequences generated by combining q-ary m-sequences and quadratic characters over a finite field of odd order, called binary generalized NTU sequences. It is shown that the relationship among the sub-sequences of binary generalized NTU sequences can be formulated as combinatorial structures called Hadamard designs. As a consequence, the combinatorial structures generalize the group structure discovered by Kodera et al. (IEICE Trans. Fundamentals, vol.E102-A, no.12, pp.1659-1667, 2019) and lead to a finite-geometric explanation for the investigated group structure.
ER -