The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Menghasilkan semula pergerakan berkaki empat dari sudut pandangan kejuruteraan adalah penting bukan sahaja untuk mengawal pergerakan robot tetapi juga untuk menjelaskan mekanisme tak linear untuk menukar antara corak pergerakan. Dalam makalah ini, kami menghasilkan semula corak pergerakan berkaki empat, gallop, menggunakan rangkaian perkakasan penjana corak pusat (CPG) berdasarkan kumpulan abelian Z4×Z2, pada asalnya dicadangkan oleh Golubitsky et al. Kami telah pun menggunakan rangkaian untuk menjana tiga corak pergerakan, berjalan, berlari, dan terikat, dengan mengawal voltan, EMLR, dimasukkan ke semua CPG yang bertindak sebagai isyarat dari kawasan lokomotor otak tengah (MLR). Untuk menghasilkan corak gallop dan canter, kami mula-mula menganalisis simetri rangkaian menggunakan teori kumpulan. Berdasarkan keputusan analisis teori kumpulan, kami menyahsimetri gandingan kontralateral rangkaian CPG menggunakan parameter baharu sebagai tambahan kepada EMLR, kerana, manakala corak berjalan, berlari dan terikat dapat dijana daripada simetri spatio-temporal kumpulan produk Z4×Z2, corak gallop dan canter tidak. Hasilnya, menggunakan elemen malar $hat{kappa}$ pada Z2, corak pergerakan gallop dan canter dijana oleh rangkaian pada ${ f Z}_4+hat{kappa}{ f Z}_4$, dan sebenarnya dalam kertas ini, corak pergerakan gallop telah dijana pada litar sebenar.
Naruki SASAGAWA
Niigata University
Kentaro TANI
Niigata University of Health and Welfare
Takashi IMAMURA
Niigata University
Yoshinobu MAEDA
Niigata University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Naruki SASAGAWA, Kentaro TANI, Takashi IMAMURA, Yoshinobu MAEDA, "Quadruped Locomotion Patterns Generated by Desymmetrization of Symmetric Central Pattern Generator Hardware Network" in IEICE TRANSACTIONS on Fundamentals,
vol. E101-A, no. 10, pp. 1658-1667, October 2018, doi: 10.1587/transfun.E101.A.1658.
Abstract: Reproducing quadruped locomotion from an engineering viewpoint is important not only to control robot locomotion but also to clarify the nonlinear mechanism for switching between locomotion patterns. In this paper, we reproduced a quadruped locomotion pattern, gallop, using a central pattern generator (CPG) hardware network based on the abelian group Z4×Z2, originally proposed by Golubitsky et al. We have already used the network to generate three locomotion patterns, walk, trot, and bound, by controlling the voltage, EMLR, inputted to all CPGs which acts as a signal from the midbrain locomotor region (MLR). In order to generate the gallop and canter patterns, we first analyzed the network symmetry using group theory. Based on the results of the group theory analysis, we desymmetrized the contralateral couplings of the CPG network using a new parameter in addition to EMLR, because, whereas the walk, trot, and bound patterns were able to be generated from the spatio-temporal symmetry of the product group Z4×Z2, the gallop and canter patterns were not. As a result, using a constant element $hat{kappa}$ on Z2, the gallop and canter locomotion patterns were generated by the network on ${f Z}_4+hat{kappa}{f Z}_4$, and actually in this paper, the gallop locomotion pattern was generated on the actual circuit.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E101.A.1658/_p
Salinan
@ARTICLE{e101-a_10_1658,
author={Naruki SASAGAWA, Kentaro TANI, Takashi IMAMURA, Yoshinobu MAEDA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Quadruped Locomotion Patterns Generated by Desymmetrization of Symmetric Central Pattern Generator Hardware Network},
year={2018},
volume={E101-A},
number={10},
pages={1658-1667},
abstract={Reproducing quadruped locomotion from an engineering viewpoint is important not only to control robot locomotion but also to clarify the nonlinear mechanism for switching between locomotion patterns. In this paper, we reproduced a quadruped locomotion pattern, gallop, using a central pattern generator (CPG) hardware network based on the abelian group Z4×Z2, originally proposed by Golubitsky et al. We have already used the network to generate three locomotion patterns, walk, trot, and bound, by controlling the voltage, EMLR, inputted to all CPGs which acts as a signal from the midbrain locomotor region (MLR). In order to generate the gallop and canter patterns, we first analyzed the network symmetry using group theory. Based on the results of the group theory analysis, we desymmetrized the contralateral couplings of the CPG network using a new parameter in addition to EMLR, because, whereas the walk, trot, and bound patterns were able to be generated from the spatio-temporal symmetry of the product group Z4×Z2, the gallop and canter patterns were not. As a result, using a constant element $hat{kappa}$ on Z2, the gallop and canter locomotion patterns were generated by the network on ${f Z}_4+hat{kappa}{f Z}_4$, and actually in this paper, the gallop locomotion pattern was generated on the actual circuit.},
keywords={},
doi={10.1587/transfun.E101.A.1658},
ISSN={1745-1337},
month={October},}
Salinan
TY - JOUR
TI - Quadruped Locomotion Patterns Generated by Desymmetrization of Symmetric Central Pattern Generator Hardware Network
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1658
EP - 1667
AU - Naruki SASAGAWA
AU - Kentaro TANI
AU - Takashi IMAMURA
AU - Yoshinobu MAEDA
PY - 2018
DO - 10.1587/transfun.E101.A.1658
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E101-A
IS - 10
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - October 2018
AB - Reproducing quadruped locomotion from an engineering viewpoint is important not only to control robot locomotion but also to clarify the nonlinear mechanism for switching between locomotion patterns. In this paper, we reproduced a quadruped locomotion pattern, gallop, using a central pattern generator (CPG) hardware network based on the abelian group Z4×Z2, originally proposed by Golubitsky et al. We have already used the network to generate three locomotion patterns, walk, trot, and bound, by controlling the voltage, EMLR, inputted to all CPGs which acts as a signal from the midbrain locomotor region (MLR). In order to generate the gallop and canter patterns, we first analyzed the network symmetry using group theory. Based on the results of the group theory analysis, we desymmetrized the contralateral couplings of the CPG network using a new parameter in addition to EMLR, because, whereas the walk, trot, and bound patterns were able to be generated from the spatio-temporal symmetry of the product group Z4×Z2, the gallop and canter patterns were not. As a result, using a constant element $hat{kappa}$ on Z2, the gallop and canter locomotion patterns were generated by the network on ${f Z}_4+hat{kappa}{f Z}_4$, and actually in this paper, the gallop locomotion pattern was generated on the actual circuit.
ER -