The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Dalam surat ini, kaedah generik untuk membina set jujukan zon korelasi sifar binari ortogonal (ZCZ) daripada set jujukan saling melengkapi ortogon (MOCSS) dengan sifat tertentu dibentangkan pada mulanya. Kemudian syarat yang memuaskan MOCSS dijana daripada matriks ortogonal binari dengan tertib N×N, Di mana N=p-1, p ialah perdana. Akibatnya, jujukan ZCZ binari saling ortogon ditetapkan dengan parameter (2N2,N,N+1)-ZCZ boleh diperolehi, bilangan set ZCZ ialah N. Ambil perhatian bahawa setiap set jujukan ZCZ tunggal adalah optimum berkenaan dengan terikat teori.
Yubo LI
Yanshan University
Shuonan LI
Yanshan University
Hongqian XUAN
Yanshan University
Xiuping PENG
Yanshan University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Yubo LI, Shuonan LI, Hongqian XUAN, Xiuping PENG, "A Generic Construction of Mutually Orthogonal Optimal Binary ZCZ Sequence Sets" in IEICE TRANSACTIONS on Fundamentals,
vol. E101-A, no. 12, pp. 2217-2220, December 2018, doi: 10.1587/transfun.E101.A.2217.
Abstract: In this letter, a generic method to construct mutually orthogonal binary zero correlation zone (ZCZ) sequence sets from mutually orthogonal complementary sequence sets (MOCSSs) with certain properties is presented at first. Then MOCSSs satisfying conditions are generated from binary orthogonal matrices with order N×N, where N=p-1, p is a prime. As a result, mutually orthogonal binary ZCZ sequence sets with parameters (2N2,N,N+1)-ZCZ can be obtained, the number of ZCZ sets is N. Note that each single ZCZ sequence set is optimal with respect to the theoretical bound.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E101.A.2217/_p
Salinan
@ARTICLE{e101-a_12_2217,
author={Yubo LI, Shuonan LI, Hongqian XUAN, Xiuping PENG, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={A Generic Construction of Mutually Orthogonal Optimal Binary ZCZ Sequence Sets},
year={2018},
volume={E101-A},
number={12},
pages={2217-2220},
abstract={In this letter, a generic method to construct mutually orthogonal binary zero correlation zone (ZCZ) sequence sets from mutually orthogonal complementary sequence sets (MOCSSs) with certain properties is presented at first. Then MOCSSs satisfying conditions are generated from binary orthogonal matrices with order N×N, where N=p-1, p is a prime. As a result, mutually orthogonal binary ZCZ sequence sets with parameters (2N2,N,N+1)-ZCZ can be obtained, the number of ZCZ sets is N. Note that each single ZCZ sequence set is optimal with respect to the theoretical bound.},
keywords={},
doi={10.1587/transfun.E101.A.2217},
ISSN={1745-1337},
month={December},}
Salinan
TY - JOUR
TI - A Generic Construction of Mutually Orthogonal Optimal Binary ZCZ Sequence Sets
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2217
EP - 2220
AU - Yubo LI
AU - Shuonan LI
AU - Hongqian XUAN
AU - Xiuping PENG
PY - 2018
DO - 10.1587/transfun.E101.A.2217
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E101-A
IS - 12
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - December 2018
AB - In this letter, a generic method to construct mutually orthogonal binary zero correlation zone (ZCZ) sequence sets from mutually orthogonal complementary sequence sets (MOCSSs) with certain properties is presented at first. Then MOCSSs satisfying conditions are generated from binary orthogonal matrices with order N×N, where N=p-1, p is a prime. As a result, mutually orthogonal binary ZCZ sequence sets with parameters (2N2,N,N+1)-ZCZ can be obtained, the number of ZCZ sets is N. Note that each single ZCZ sequence set is optimal with respect to the theoretical bound.
ER -