The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Sebagai objek gabungan yang optimum, keluarga perbezaan Mendelsohn sempurna kitaran (CPMDF) telah diperkenalkan oleh Fuji-Hara dan Miao untuk membina kod ortogon optik optimum. Dalam makalah ini, kami mencadangkan pembinaan langsung CPMDF yang terputus-putus daripada siklotomi Zeng-Cai-Tang-Yang. Berbanding dengan karya Fan, Cai dan Tang baru-baru ini, pembinaan kami tidak perlu bergantung pada matriks perbezaan kitaran. Tambahan pula, urutan lompat frekuensi optimum (FHS) adalah sejenis FHS optimum yang mempunyai korelasi auto Hamming yang optimum untuk sebarang tetingkap korelasi. Sebagai aplikasi CPMDF terputus-putus kami, kami mempersembahkan pembinaan gabungan yang lebih fleksibel bagi FHS yang optimum, yang mentafsir pembinaan sebelumnya yang dicadangkan oleh Cai, Zhou, Yang dan Tang.
Shanding XU
Nanjing University of Aeronautics and Astronautics,Guangzhou University
Xiwang CAO
Nanjing University of Aeronautics and Astronautics
Jian GAO
Shandong University of Technology
Chunming TANG
Guangzhou University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Shanding XU, Xiwang CAO, Jian GAO, Chunming TANG, "A Kind of Disjoint Cyclic Perfect Mendelsohn Difference Family and Its Applications in Strictly Optimal FHSs" in IEICE TRANSACTIONS on Fundamentals,
vol. E101-A, no. 12, pp. 2338-2343, December 2018, doi: 10.1587/transfun.E101.A.2338.
Abstract: As an optimal combinatorial object, cyclic perfect Mendelsohn difference family (CPMDF) was introduced by Fuji-Hara and Miao to construct optimal optical orthogonal codes. In this paper, we propose a direct construction of disjoint CPMDFs from the Zeng-Cai-Tang-Yang cyclotomy. Compared with a recent work of Fan, Cai, and Tang, our construction doesn't need to depend on a cyclic difference matrix. Furthermore, strictly optimal frequency-hopping sequences (FHSs) are a kind of optimal FHSs which has optimal Hamming auto-correlation for any correlation window. As an application of our disjoint CPMDFs, we present more flexible combinatorial constructions of strictly optimal FHSs, which interpret the previous construction proposed by Cai, Zhou, Yang, and Tang.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E101.A.2338/_p
Salinan
@ARTICLE{e101-a_12_2338,
author={Shanding XU, Xiwang CAO, Jian GAO, Chunming TANG, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={A Kind of Disjoint Cyclic Perfect Mendelsohn Difference Family and Its Applications in Strictly Optimal FHSs},
year={2018},
volume={E101-A},
number={12},
pages={2338-2343},
abstract={As an optimal combinatorial object, cyclic perfect Mendelsohn difference family (CPMDF) was introduced by Fuji-Hara and Miao to construct optimal optical orthogonal codes. In this paper, we propose a direct construction of disjoint CPMDFs from the Zeng-Cai-Tang-Yang cyclotomy. Compared with a recent work of Fan, Cai, and Tang, our construction doesn't need to depend on a cyclic difference matrix. Furthermore, strictly optimal frequency-hopping sequences (FHSs) are a kind of optimal FHSs which has optimal Hamming auto-correlation for any correlation window. As an application of our disjoint CPMDFs, we present more flexible combinatorial constructions of strictly optimal FHSs, which interpret the previous construction proposed by Cai, Zhou, Yang, and Tang.},
keywords={},
doi={10.1587/transfun.E101.A.2338},
ISSN={1745-1337},
month={December},}
Salinan
TY - JOUR
TI - A Kind of Disjoint Cyclic Perfect Mendelsohn Difference Family and Its Applications in Strictly Optimal FHSs
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2338
EP - 2343
AU - Shanding XU
AU - Xiwang CAO
AU - Jian GAO
AU - Chunming TANG
PY - 2018
DO - 10.1587/transfun.E101.A.2338
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E101-A
IS - 12
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - December 2018
AB - As an optimal combinatorial object, cyclic perfect Mendelsohn difference family (CPMDF) was introduced by Fuji-Hara and Miao to construct optimal optical orthogonal codes. In this paper, we propose a direct construction of disjoint CPMDFs from the Zeng-Cai-Tang-Yang cyclotomy. Compared with a recent work of Fan, Cai, and Tang, our construction doesn't need to depend on a cyclic difference matrix. Furthermore, strictly optimal frequency-hopping sequences (FHSs) are a kind of optimal FHSs which has optimal Hamming auto-correlation for any correlation window. As an application of our disjoint CPMDFs, we present more flexible combinatorial constructions of strictly optimal FHSs, which interpret the previous construction proposed by Cai, Zhou, Yang, and Tang.
ER -