The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Kami memperkenalkan jenis formula punca kuasa dua seperti Montgomery yang baharu GF(2m) ditakrifkan oleh trinomial tak boleh dikurangkan sewenang-wenangnya, yang lebih cekap berbanding dengan operasi punca kuasa dua klasik. Dengan memilih faktor Montgomery yang betul untuk jenis trinomial yang berbeza, kerumitan ruang dan masa pengiraan punca kuasa dua tersebut sepadan atau mengatasi hasil terbaik. Aplikasi praktikal punca kuasa dua seperti Montgomery dalam pengiraan penyongsangan juga dibentangkan.
Yin LI
Xinyang Normal University
Yu ZHANG
Xinyang Normal University
Xiaoli GUO
Xinyang Normal University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Yin LI, Yu ZHANG, Xiaoli GUO, "Fast Montgomery-Like Square Root Computation for All Trinomials" in IEICE TRANSACTIONS on Fundamentals,
vol. E102-A, no. 1, pp. 307-309, January 2019, doi: 10.1587/transfun.E102.A.307.
Abstract: We introduce a new type of Montgomery-like square root formulae in GF(2m) defined by an arbitrary irreducible trinomial, which is more efficient compared with classic square root operation. By choosing proper Montgomery factors for different kind of trinomials, the space and time complexities of such square root computations match or outperform the best results. A practical application of the Montgomery-like square root in inversion computation is also presented.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E102.A.307/_p
Salinan
@ARTICLE{e102-a_1_307,
author={Yin LI, Yu ZHANG, Xiaoli GUO, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Fast Montgomery-Like Square Root Computation for All Trinomials},
year={2019},
volume={E102-A},
number={1},
pages={307-309},
abstract={We introduce a new type of Montgomery-like square root formulae in GF(2m) defined by an arbitrary irreducible trinomial, which is more efficient compared with classic square root operation. By choosing proper Montgomery factors for different kind of trinomials, the space and time complexities of such square root computations match or outperform the best results. A practical application of the Montgomery-like square root in inversion computation is also presented.},
keywords={},
doi={10.1587/transfun.E102.A.307},
ISSN={1745-1337},
month={January},}
Salinan
TY - JOUR
TI - Fast Montgomery-Like Square Root Computation for All Trinomials
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 307
EP - 309
AU - Yin LI
AU - Yu ZHANG
AU - Xiaoli GUO
PY - 2019
DO - 10.1587/transfun.E102.A.307
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E102-A
IS - 1
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - January 2019
AB - We introduce a new type of Montgomery-like square root formulae in GF(2m) defined by an arbitrary irreducible trinomial, which is more efficient compared with classic square root operation. By choosing proper Montgomery factors for different kind of trinomials, the space and time complexities of such square root computations match or outperform the best results. A practical application of the Montgomery-like square root in inversion computation is also presented.
ER -