The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Kami memperkenalkan tanggapan tera air untuk fungsi kriptografi dan mencadangkan skema konkrit untuk menanda air fungsi kriptografi. Secara tidak formal, skim penanda air digital untuk fungsi kriptografi membenamkan maklumat, dipanggil a tanda, kepada fungsi seperti fungsi sehala dan fungsi penyahsulitan penyulitan kunci awam. Terdapat dua keperluan asas untuk skim penanda air. Fungsi tertanam tanda mestilah setara secara fungsi dengan fungsi asal. Mesti sukar bagi pihak lawan untuk mengalih keluar tanda terbenam tanpa merosakkan fungsi asal. Di sebalik kepentingan dan kegunaannya, hanya terdapat beberapa karya teori tentang penanda air untuk fungsi (atau program). Tambahan pula, kami tidak mempunyai takrifan ketat tera air untuk fungsi kriptografi dan pembinaan konkrit. Untuk menyelesaikan masalah di atas, kami memperkenalkan tanggapan tera air untuk fungsi kriptografi dan menentukan keselamatannya. Tambahan pula, kami mempersembahkan fungsi pintu perangkap lossy (LTF) berdasarkan masalah masalah Diffie-Hellman bilinear keputusan dan skim penanda air untuk LTF. Skim penanda air kami selamat di bawah andaian Diffie-Hellman luaran simetri dalam model standard. Kami menggunakan teknik penyulitan sistem dwi dan ruang vektor berpasangan dwi (DPVS) untuk membina skema penanda air kami. Ini adalah aplikasi baharu DPVS.
Ryo NISHIMAKI
the NTT Secure Platform Laboratories
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Ryo NISHIMAKI, "How to Watermark Cryptographic Functions by Bilinear Maps" in IEICE TRANSACTIONS on Fundamentals,
vol. E102-A, no. 1, pp. 99-113, January 2019, doi: 10.1587/transfun.E102.A.99.
Abstract: We introduce a notion of watermarking for cryptographic functions and propose a concrete scheme for watermarking cryptographic functions. Informally speaking, a digital watermarking scheme for cryptographic functions embeds information, called a mark, into functions such as one-way functions and decryption functions of public-key encryption. There are two basic requirements for watermarking schemes. A mark-embedded function must be functionally equivalent to the original function. It must be difficult for adversaries to remove the embedded mark without damaging the original functionality. In spite of its importance and usefulness, there have only been a few theoretical works on watermarking for functions (or programs). Furthermore, we do not have rigorous definitions of watermarking for cryptographic functions and concrete constructions. To solve the problem above, we introduce a notion of watermarking for cryptographic functions and define its security. Furthermore, we present a lossy trapdoor function (LTF) based on the decisional bilinear Diffie-Hellman problem problem and a watermarking scheme for the LTF. Our watermarking scheme is secure under the symmetric external Diffie-Hellman assumption in the standard model. We use techniques of dual system encryption and dual pairing vector spaces (DPVS) to construct our watermarking scheme. This is a new application of DPVS.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E102.A.99/_p
Salinan
@ARTICLE{e102-a_1_99,
author={Ryo NISHIMAKI, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={How to Watermark Cryptographic Functions by Bilinear Maps},
year={2019},
volume={E102-A},
number={1},
pages={99-113},
abstract={We introduce a notion of watermarking for cryptographic functions and propose a concrete scheme for watermarking cryptographic functions. Informally speaking, a digital watermarking scheme for cryptographic functions embeds information, called a mark, into functions such as one-way functions and decryption functions of public-key encryption. There are two basic requirements for watermarking schemes. A mark-embedded function must be functionally equivalent to the original function. It must be difficult for adversaries to remove the embedded mark without damaging the original functionality. In spite of its importance and usefulness, there have only been a few theoretical works on watermarking for functions (or programs). Furthermore, we do not have rigorous definitions of watermarking for cryptographic functions and concrete constructions. To solve the problem above, we introduce a notion of watermarking for cryptographic functions and define its security. Furthermore, we present a lossy trapdoor function (LTF) based on the decisional bilinear Diffie-Hellman problem problem and a watermarking scheme for the LTF. Our watermarking scheme is secure under the symmetric external Diffie-Hellman assumption in the standard model. We use techniques of dual system encryption and dual pairing vector spaces (DPVS) to construct our watermarking scheme. This is a new application of DPVS.},
keywords={},
doi={10.1587/transfun.E102.A.99},
ISSN={1745-1337},
month={January},}
Salinan
TY - JOUR
TI - How to Watermark Cryptographic Functions by Bilinear Maps
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 99
EP - 113
AU - Ryo NISHIMAKI
PY - 2019
DO - 10.1587/transfun.E102.A.99
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E102-A
IS - 1
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - January 2019
AB - We introduce a notion of watermarking for cryptographic functions and propose a concrete scheme for watermarking cryptographic functions. Informally speaking, a digital watermarking scheme for cryptographic functions embeds information, called a mark, into functions such as one-way functions and decryption functions of public-key encryption. There are two basic requirements for watermarking schemes. A mark-embedded function must be functionally equivalent to the original function. It must be difficult for adversaries to remove the embedded mark without damaging the original functionality. In spite of its importance and usefulness, there have only been a few theoretical works on watermarking for functions (or programs). Furthermore, we do not have rigorous definitions of watermarking for cryptographic functions and concrete constructions. To solve the problem above, we introduce a notion of watermarking for cryptographic functions and define its security. Furthermore, we present a lossy trapdoor function (LTF) based on the decisional bilinear Diffie-Hellman problem problem and a watermarking scheme for the LTF. Our watermarking scheme is secure under the symmetric external Diffie-Hellman assumption in the standard model. We use techniques of dual system encryption and dual pairing vector spaces (DPVS) to construct our watermarking scheme. This is a new application of DPVS.
ER -