The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Situasi di mana beberapa parameter populasi perlu dianggarkan secara serentak sering timbul dalam bidang aplikasi yang luas, termasuk pemodelan kebolehpercayaan, analisis kemandirian dan kajian biologi. Dalam makalah ini, kami mencadangkan kaedah Bayesian untuk anggaran parameter tertib bagi dua populasi eksponen, yang menggabungkan maklumat terdahulu tentang sekatan pesanan mudah, tetapi kadangkala melanggar sekatan pesanan. Kajian simulasi menunjukkan bahawa penganggar yang dicadangkan adalah lebih cekap (dari segi ralat min kuasa dua) daripada regresi isotonik penganggar kemungkinan maksimum dengan pemberat yang sama. Contoh ilustrasi akhirnya dibentangkan.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Hideki NAGATSUKA, Toshinari KAMAKURA, Tsunenori ISHIOKA, "An Efficient Bayesian Estimation of Ordered Parameters of Two Exponential Distributions" in IEICE TRANSACTIONS on Fundamentals,
vol. E92-A, no. 7, pp. 1608-1614, July 2009, doi: 10.1587/transfun.E92.A.1608.
Abstract: The situations where several population parameters need to be estimated simultaneously arise frequently in wide areas of applications, including reliability modeling, survival analysis and biological study. In this paper, we propose Bayesian methods of estimation of the ordered parameters of the two exponential populations, which incorporate the prior information about the simple order restriction, but sometimes breaks the order restriction. A simulation study shows that the proposed estimators are more efficient (in terms of mean square errors) than the isotonic regression of the maximum likelihood estimators with equal weights. An illustrative example is finally presented.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E92.A.1608/_p
Salinan
@ARTICLE{e92-a_7_1608,
author={Hideki NAGATSUKA, Toshinari KAMAKURA, Tsunenori ISHIOKA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={An Efficient Bayesian Estimation of Ordered Parameters of Two Exponential Distributions},
year={2009},
volume={E92-A},
number={7},
pages={1608-1614},
abstract={The situations where several population parameters need to be estimated simultaneously arise frequently in wide areas of applications, including reliability modeling, survival analysis and biological study. In this paper, we propose Bayesian methods of estimation of the ordered parameters of the two exponential populations, which incorporate the prior information about the simple order restriction, but sometimes breaks the order restriction. A simulation study shows that the proposed estimators are more efficient (in terms of mean square errors) than the isotonic regression of the maximum likelihood estimators with equal weights. An illustrative example is finally presented.},
keywords={},
doi={10.1587/transfun.E92.A.1608},
ISSN={1745-1337},
month={July},}
Salinan
TY - JOUR
TI - An Efficient Bayesian Estimation of Ordered Parameters of Two Exponential Distributions
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1608
EP - 1614
AU - Hideki NAGATSUKA
AU - Toshinari KAMAKURA
AU - Tsunenori ISHIOKA
PY - 2009
DO - 10.1587/transfun.E92.A.1608
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E92-A
IS - 7
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - July 2009
AB - The situations where several population parameters need to be estimated simultaneously arise frequently in wide areas of applications, including reliability modeling, survival analysis and biological study. In this paper, we propose Bayesian methods of estimation of the ordered parameters of the two exponential populations, which incorporate the prior information about the simple order restriction, but sometimes breaks the order restriction. A simulation study shows that the proposed estimators are more efficient (in terms of mean square errors) than the isotonic regression of the maximum likelihood estimators with equal weights. An illustrative example is finally presented.
ER -