The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Kertas kerja ini mempertimbangkan masalah anggaran lokasi sasaran dalam rangkaian penderia wayarles heterogen dan mencadangkan algoritma baru menggunakan graf faktor untuk menggabungkan data terukur heterogen. Dalam algoritma yang dicadangkan, kami memetakan masalah anggaran lokasi sasaran kepada rangka kerja graf faktor dan kemudian menggunakan algoritma hasil tambah untuk menggabungkan data terukur heterogen supaya penderia heterogen boleh bekerjasama untuk meningkatkan ketepatan anggaran lokasi sasaran. Keputusan simulasi menunjukkan bahawa algoritma yang dicadangkan memberikan ketepatan anggaran lokasi yang tinggi.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Jung-Chieh CHEN, "Data Fusion of TOA and AOA Measurements for Target Location Estimation in Heterogeneous Wireless Sensor Networks Using Factor Graphs" in IEICE TRANSACTIONS on Fundamentals,
vol. E92-A, no. 11, pp. 2927-2931, November 2009, doi: 10.1587/transfun.E92.A.2927.
Abstract: This paper considers the problem of target location estimation in heterogeneous wireless sensor networks and proposes a novel algorithm using a factor graph to fuse the heterogeneous measured data. In the proposed algorithm, we map the problem of target location estimation to a factor graph framework and then use the sum-product algorithm to fuse the heterogeneous measured data so that heterogeneous sensors can collaborate to improve the accuracy of target location estimation. Simulation results indicate that the proposed algorithm provides high location estimation accuracy.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E92.A.2927/_p
Salinan
@ARTICLE{e92-a_11_2927,
author={Jung-Chieh CHEN, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Data Fusion of TOA and AOA Measurements for Target Location Estimation in Heterogeneous Wireless Sensor Networks Using Factor Graphs},
year={2009},
volume={E92-A},
number={11},
pages={2927-2931},
abstract={This paper considers the problem of target location estimation in heterogeneous wireless sensor networks and proposes a novel algorithm using a factor graph to fuse the heterogeneous measured data. In the proposed algorithm, we map the problem of target location estimation to a factor graph framework and then use the sum-product algorithm to fuse the heterogeneous measured data so that heterogeneous sensors can collaborate to improve the accuracy of target location estimation. Simulation results indicate that the proposed algorithm provides high location estimation accuracy.},
keywords={},
doi={10.1587/transfun.E92.A.2927},
ISSN={1745-1337},
month={November},}
Salinan
TY - JOUR
TI - Data Fusion of TOA and AOA Measurements for Target Location Estimation in Heterogeneous Wireless Sensor Networks Using Factor Graphs
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2927
EP - 2931
AU - Jung-Chieh CHEN
PY - 2009
DO - 10.1587/transfun.E92.A.2927
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E92-A
IS - 11
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - November 2009
AB - This paper considers the problem of target location estimation in heterogeneous wireless sensor networks and proposes a novel algorithm using a factor graph to fuse the heterogeneous measured data. In the proposed algorithm, we map the problem of target location estimation to a factor graph framework and then use the sum-product algorithm to fuse the heterogeneous measured data so that heterogeneous sensors can collaborate to improve the accuracy of target location estimation. Simulation results indicate that the proposed algorithm provides high location estimation accuracy.
ER -